Introduction and etiology of Brucellosis and various approaches to its diagnosis

S.K.Kashyap
Dept. of Vety. Microbiology &
Biotechnology

Brucellosis

- Chronic infectious disease in cattle
- Causes abortions, birth of dead calves
- Retained placenta
- Infertility
- Reduced milk production
- Infection and swelling of testicles in bulls
- Lameness due to infected bursae

Host Specificities

- B. melitensis in cattle & swine
- B. suis in cattle– no abortion.
- B. suis biovar 1 infectious for man
- B. suis biovar 2 noninfectious for man
- Role of host factors tissue tropism erythritol in ruminant placenta

Impact of Brucellosis

- Economic loss through abortion/infertility
- Economic loss through trade restrictions
- Zoonotic risk to man

Susceptible hosts

- cattle
- buffaloes
- sheep
- goats
- pigs
- dogs
- horses
- Man

Brucella

- Gram negative bacteria
- Intracellular parasites
- Short rods, coccobacilli
- Six species
- Nonsporing
- Facultative anaerobe
- Form small colonies on artificial media

Sir David Bruce (1855-1931)

- Army Physician and
- Microbiologist who
- discovered
 Micrococcus melitensis (1887).
- Nomenclature today is credited to Sir David Bruce

Undulant Fever History:

- 1859 Marston described disease
- 1886 Bruce discovered causative organism
- 1897 Hughes wrote classic monograph (844 patients)
- 1897 Bang causative organism of contagious abortion
- 1918 Alice Evans noted resemblance between B. melitensis & B. abortus

MEDITERRANEAN FEVER COMMISSION, 1904

Standing: Dr. T. Zammit; Capt. Crawford Kennedy, R.A.M.C.; Major J. C. Weir, R.A.M.C., Seated: Major J. G. McNought, R.A.M.C.; Dr. J. W. H. Eyre; Col. David Bruce, R.A.M.C.; Major T. McCulloch, R.A.M.C.; Staff Surgeon E. M. A. Clayton, R.N.

Brucellae

- Gram-negative facultative intracellular (extracellular) bacteria.
- Until recently a monospecific genus (>95% genes with 98-100% nucleotide identity)
- Six named species & biovars (differential host specificity & pathogenicity)
- No obvious virulence factors

Brucel
species
Brucella m
Brucella ah

Brucella suis

Brucella canis

Brucella ovis

elitensis Brucella abortus

Biovars

3

7

5

1

1

1

Reservoir Host

Sheep, goats, cattle

Cattle

Swine

Dogs

Sheep

Rodents

Otter, seal

Dolphin, porpoise

Not determined * = suggested name

Brucella neotomae Not determined Brucella pinnipediae* Brucella cetaceae*

Brucellosis abortus

What is Brucella?

- B.abortus
- B.melitensis
- B.suis
- B.ovis
- B.canis
- B.neotamae
- B.maris

Single colony

Aetiology

Brucella abortus

- Cattle and Buffaloes
- Brucella melitensis
- Sheep and Goats

Brucella suis

- Pigs

Brucella canis

- Dogs
- Brucella ovis Ram (Male sheep, but not reported from India)

pathogenesis

Immune mechanisms

Transmission

- through mucous membranes of oropharynx, upper respiratory tract, conjunctiva and male or female genital tract.
- Through grazing, feed, water etc. contaminated by discharges from infected animals.
- Contact with aborted foetus, foetal membranes and infected new born calves.
- Intra-herd spread occurs by both vertical and horizontal transmission.
- Movement of contaminated tail acts as a common means of spreading the disease.
- Milking personnel can act as a means of mechanical transmission.
- Spreading of disease from one place to another is through movement of infected animals.
- Disease is transmitted through artificial insemination but unlikely through natural services by an infected Bull

Characteristic symptoms

- Abortion in late gestation (7-9 month in Cattles and Buffaloes, 3-5 months in Sheep and Goats).-abortion storm
- Orchitis.
- Accumulation of fluid in scrotum.
- Retention of placenta.

Gross lesions

- Oedema and thickening of the placenta giving it leathery appearance.
- Necrosis of cotyledons.
- Oedema of foetus, red coloured (serosanguinous) fluid in its body cavity.
- Cobbler-stone appearance of foetal lungs due to broncho - pneumonia.
- Enlargement of scrotum due to orchitis in males.
- Induration (firmness) of mammary gland in cows.
- Enlargement of knee joints (hygroma).

Microscopic lesions

- Infiltration of phagocytic cells, epithelioid cells and lymphocytes surrounded by fibrous tissue proliferation.
- Foetal broncho pneumonia.
- Organism in chorionic epithelial cells.
- In males, proliferation of fibrous tissue which compresses or replaces the epididymis resulting in enlargement of testicles.

Diagnostic tests currently available

Test Specimenrequired		Test detects	Time taken to
			obtain result
•	Culture and identification of <i>B. aborti</i>	us Tissue Brucel	llae 6 days
•	Rose Bengal plate test (RBPT)	Serum Antibo	ody 10 min
•	Complement fixation test (CFT)	Serum Antibo	ody 4 hrs
•	Enzyme-linked immunosorbent assay	/	
	(ELISA)	Serum Antib	ody 2 hrs
•	Serum agglutination test (SAT)	Serum Antib	ody 24 hrs
•	Bulk milk ring test (BMRT)	Milk Antiboo	dy 1 hour
•	Individual milk ring test (IMRT)	Milk Antiboo	dy 1 hour

Placenta from aborted buffalo due to Brucellosis.

Aborted buffalo foetus after three months of pregnancy

Cobblestone appearance of the foetal lungs

Orchitis in rams

Swelling of testicles

Swelling of joints

Brucellosis in man

- Undulant fever
- Contact with infected animals and discharges
- Consumption of unpasteurized milk
- Inhalation –droplet infection
- Through eyes
- Through cuts and abrasions
- Through live vaccines

Brucellosis in Man

- Primarily presents as "undulant" fever
 - Fever
 - Headaches
 - Weight loss
 - Anorexia
 - Fatigue
 - Depression
- Complications
 - Osteoarthritis
 - Genitourinary
 - Hepatic
 - Pulmonary
 - Psychoneurosis
 - Endocarditis
 - Abortion

- Chronic
- Difficult to treat

Brucellosis – A worldwide zoonosis

- <0.01->200,000 human cases/100,000
- Middle East
- Mediterranean basin
- South-Central America
- South Eastern Europe
- Asia
- Africa
- Caribbean

Clinical diagnosis:

Acute or insidious onset of fever, night sweats, undue fatigue, anorexia, weight loss, headache, and arthralgia

Laboratory criteria for diagnosis

- •Isolation of Brucella sp. from a clinical specimen, or
- •Fourfold or greater rise in *Brucella* agglutination titre between acute- and convalescent-phase serum

Case classification

Probable: a clinically compatible case that is epidemiologically linked to a confirmed case or that has supportive serology

Confirmed: a clinically compatible case that is laboratory confirmed

Human Brucellosis – When to suspect:

- Consumption of unpasteurised dairy produce
- Undercooked meat from infected animals
- Eating aborted foetuses (Ecuador)
- Crushing umbilical cord of newborn lambs/kids between teeth
- Contact skin lesions; mucous membranes (slaughter house workers; hunters; vets)

Potential Routes of Transmission

- Respiratory
- Animal contact or environmental contamination
- Sexual (among livestock)
- Gastro-intestinal through consumption of animal produce
- Laboratory acquired infection
- Bioterrorism

Brucella as agent for Bioterror

- 100,000 exposed to cloud B. melitensis
- 82,500 cases needing extended treatment
- 413 deaths
- Economic impact 477.7 million dollars for every 100,000 exposed!

Symptoms in man

- Acute brucellosis in humans usually begins with intermittent fever, weakness, chills, sweating, headaches, muscle and joint aches and malaise.
- behavioural changes, Characteristically, the fever spikes each day, giving rise to the term 'undulant fever'
- fever may be chronic and persist for many years

Diagnosis

- Herd/Case History.
- Symptoms and lesions.
- Immunodiagnostic tests
- Isolation of bacteria.
- Demonstration of organisms in aborted materials.
- Detection of bacterial genome by PCR.

Serological tests

- SAT-serum agglutination test
- RBPT-Rose Bengal Plate agglutination test
- MRT-Milk ring test
- BPAT-Brucella Plate agglutination Test
- CFT-Complement Fixation Test
- AGPT-Agar gel precipitation test
- ELISA-Enzyme linked immunosorbant assay

Diagram showing agglutination process

Plate agglutination test

RBPT

Diagrammatic illustration of tube agglutination test

ELISA

enzyme labeled avidin-biotin techniques-

- A. Antigen coated in well, B. Primary antibody binds with antigen,
 - C. Secondary antibody labeled with biotin binds with B,
 - D. Avidin conjugated with Peroxidase binds with C, and E. Peroxidase reaction with substrate.

Typical diagnostic samples

- Blood cultures:
 - 15-70% positive
- Bone marrow
- Others
 - Tissues
 - Fluids CSF; synovial; pleural effusion; abscess drains

Identification

- Small Gram negative coccobacilli (poorly staining)
- Oxidase positive
- Urease positive
- Non-motile
- No growth on MacConkey
- No requirement for X & V factors
- Take culture to containment level 3!!!

Treatment

- Prolonged course
- Rifampicin + Doxycycline
- Streptomycin + Doxycycline
- Gentamicin + Doxycycline

Confirmation:

- Classical Biotyping (CO₂; H₂S; Urea; Dye & phage susceptibilities; Agglutination monospecific antisera (A+M)
- Genus-specific PCR
- Multiplex AMOS PCR - <u>Abortus</u>, <u>Melitensis</u>, <u>Ovis</u> & <u>Suis</u>.
- PCR over deletions to identify vaccine strains

S19 ery gene PCR

- 1 B. abortus biovar 1 wild type control
- 2 S19 control
- 3 to 13 B. abortus Field isolates from NI

- Wild type ery gene gives a PCR product of 1063 bp
- S19 has a 702 bp deletion which results in a 361 bp PCR product

Approaches:

- Methods that index chromosomal DNA polymorphisms RFLP
 - Digestion & hybridisation with probe (IS711)
 - EcoR1 digest used to characterise marine mammal isolates
 - Infrequent cutter + PFGE
 - Xba1, Pac1 or Spe1 species differentiation (not biovars)
 - Ribotyping poor discrimination, operons <0.1% chromosome
 - Used to show marine isolates belong to Brucellae and that they represented new subgroup (HindIII rDNA profiles)

Discrimination reliant on multiple copies at diverse locations

IS711 Fingerprinting

- Fails to produce the same level of characterisation as the phenotypic approach. BUT are more:
 - Rapid
 - Safe
 - Objective
- Identification of 3 groups within marine mammal isolates.
- Techniques now in use in reference centre work
- Continue validation with further isolates and genetically related bacteria.

PCR-Gene RFLP Typing:

- Polymorphic alleles digested with RE's
 - OMP typing:
 - Omp2 locus (omp2a and omp2b 36 kDa porin proteins)
 - Used to classify marine isolates
 - Dolphins/Porpoises have 2 omp2b genes
 - Otter/Seal one omp2a & one omp2b
 - Terrestrial mammals one of each or two omp2a
 - Omp25
 - Very homogeneous
 - Omp31
 - Moderate differentiation
 - Absent from all B. abortus biovars

Fails to differentiate all nomenspecies/biovars

AFLP

- Restriction-ligation DNA fragments tagged with specific adapters
 - Primers complementary to adapters + DNA used to amplify subset of tagged restricted fragments

Unable to differentiate all nomenspecies/biovars

Multi-locus microsatellite fingerprinting

- PCR based using sequence tandemly repeated variable numbers in different strains
- Different loci with different mutation rates
- Permits multiple levels of discrimination
- Discrimination of species, biovars and among unrelated isolates within biovars
- Multiple isolates give constant patterns

Variable Number of Tandem Repeat (VNTR) Typing

VNTR profiling for brucellosis:

Genomic organisation:

- Brucellae usually have two chromosomes, chromosome I 2.1 Mb and chromosome II 1.2 Mb
- Chr I classic bacterial circular chromosome, genes for transcription, translation & protein synthesis
- Chr II has cluster plasmid-like replication genes (cf plasmids in Agrobacterium & Rhizobium spp) membrane transport & energy metabolism genes
- Distinct chromosomal origins?
- Chr II has features of megaplasmid, could it have been captured from an ancestral Brucella?
- B. suis biovar 3 has single 3.3 Mb chromosome

Whole Genome Comparisons

- B. melitensis (DelVecchio et al. Proc Nat Acad Sci 2002 99; 443-8).
- B. Suis (Paulsen et al. PNAS 2002 99; 131; 48-53).
- B. abortus (Halling et al. 2005 J. Bacteriol. 187; 2715-26).
- B. ovis (currently underway, TIGR)

Comparative Genomic Analysis of closely related bacteria with different host specificity / pathogenicity

Brucella spp. persist in different cell types:

- Infect oropharynx to genital tract
- Cellular tropisms
 - Non professional placental trophoblasts
 - Professional phagocytes
 - Foetal lung tissue
 - Reticuloendothelial system