

Muscle Types

	<u>SKELETAL</u>	<u>SMOOTH</u>	CARDIAC
METHOD OF CONTROL	VOLUNTARY	INVOLUNTARY	INVOLUNTARY
BANDING PATTERN	STRIATED	NON-STRIATED	STRIATED
NUCLEI/CELL	MULTI	SINGLE	SINGLE

Cardiac Muscle

Smooth Muscle

Skeletal Muscle

<u>Muscle Cross Sections Showing Bundles of</u> <u>Myofibers</u>

Cross Section of Muscle Fibers

Myofiber

Red and White Fibers in Muscle

Fiber types

Characteristics	Type 1	Type 2A	Type 2X(D)	Type 2B
Reddness	++++	+++	+	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Myoglobin content	++++	+++	+	-
Fiber diameter	+	+	++++	++++
Contraction speed	+	+++	+++	++++
Fatigue resistance	++++	+++	+	+
Contractile action	tonic	tonic	phasic	phasic
Number of mitochondria	++++	+++	+	phasic
Mitochondria size	++++	+++	+	+
Capillary density	++++	+++	+	+
Oxidative metabolism	++++	++++	+	+
Glycolytic metabolism	+	+	+++	++++
Lipid content	++++	+++	+	+
Glycogen content	+	+	++++	++++
Z disk width	++++	+++	+	
				- 10

* The characteristics are relative to the other fiber types.

The Blood Supply for Myofibers

Connective Tissues

Position of Mysiums in Muscle

• Endomysium from muscle not aged

• Endomysium after cooler aging (28 D At 4°C)

The Sarcoplasmic Reticulum

- Sarcoplasmic reticulum
 - T-tubule
- Calcium Storage
- Required for contraction

Structure of Muscle

Structure of Muscle (Cont)

Sarcomere

- Functional unit of a muscle
- Runs from z-line to z-line
 - Actin
 - Myosin

A muscle sarcomere

Myosin Filament

Actin Filament

Muscle Structure

Critical Contractile Proteins

Protein	Molecular Weight	Subunits	Location	% Myo- fibrillar Protein
Contractile	CONSCRETES OF		I S SHARE VALUE	10 A 10
Myosin	520,000	2 of 220Kd1, 4 of 20Kd	Thick filaments	43
Actin	42,000	2	Thin filaments	22
Tropomyosin	68,000	2 of 34Kd	Thin filaments	5
Troponin	69,000	30Kd, 21Kd, 18Kd	Thin filaments	5
Structural	$\times - \times_{0}$	11 _****		1. 22
Titin	2,800,000		Full sarcomere	8
Nebulin	600,000	1 1 m	Thin filaments	3
C protein	140,000		Thick filaments	2
α-actinin	200,000	2 of 100Kd	Z lines	2
M protein	160,000	0	M lines	2
Desmin	55,000	STATE FOR SALE FOR	Z lines	<1

Fat Structures

Fat Layers and Depots

I.F. = Inter-fasicular or intramucular (marbling)

I.M. = Intermuscular (seam fat)

PR. = Perinephric or Perirenal (fat around the kidneys)

FAT CELLS

Adipogenesis

• Adipoblasts

– 20 microns in diameter

- Adipocytes
 - 120 micron in diameter
 - 300 micron in obese

- Cellular make-up
 - 95% of cytoplasm is lipid
 - Remainder primarily nucleus

A D Ρ O C Y T Ε

Muscle Contraction

Introduction

- Overall structure of muscle is designed for contraction and relaxation, which leads to movement and locomotion.
- The ability to contract and relax is lost during the transformation of muscle to meat.
- Events surrounding this conversion greatly impact meat palatability

Introduction

• The biochemical processes that provide energy to the living muscle cause the accumulation of metabolites during harvest

– Affects color, WHC, pH, others

• An understanding of muscle contraction is necessary to understand these processes

Contraction

- Begins with stimuli that arrive at the surface of the muscle fiber at the sarcolemma
- Nerve impulse starts in the brain and is transmitted via nerves to the muscle

Transmembrane Potentials

- Under resting conditions, an electric potential exists between the inside and outside of the cell
 - Fluids inside are negative
 - Fluids outside are positive
 - Results in a *resting membrane potential*

Transmembrane Potentials

- Extracellular Na+ and Cl-
- Intracellular K+ and A-
- Na+ and K+ gradient maintained by a sodiumpotassium pump.

Action Potential

- Transmits electric impulse to muscle
- Travels along the membrane surface of the nerve fiber by depolarization
 - Initiated by a dramatic increase in the permeability of Na+
 - Na+ rushes into cell to establish equilibrium; however
 K+ stays in cell causing a change in the net charge inside the cell to positive
 - Lasts only a millisecond (0.5 to 1 millisecond) before the permeability to Na+ is changed to resting state

Myoneural Junction

- Action potential is not strong enough to elicit a response alone
- Uses a chemical transmitter called *acetylcholine* to be released.
 - Acetylcholinesterase is quickly released to neutralize the acetylcholine

Neuromuscular Junction (SEM)

Motor End Plates: Structures of the neuromuscular junction

Muscle Action Potentials

- Same as the action potential for nerve fibers
- Communicated to the inner muscle cell via the T-tubule system
 - Action potential transverse a muscle fiber via the ttubules and are ultimately responsible for the release of calcium from the SR

Sarcomere - Basic contractile unit of the muscle

Elements required for muscle contraction and relaxation

- 1. Acetylcholine and Acetylcholinesterase
- 2. Calcium
- 3. Adenosine 5'-triphosphate (ATP)
 - a) Derived from aerobic and anaerobic metabolism

Sources of Energy for Muscle Contraction and Relaxation

• Anerobic

• Aerobic

- Excess Hydrogen is used to reduce pyruvic acid to lactic acid, which permits glycolysis to proceed at a rapid rate
- Easily fatigued

electron transport system

fats

glycerol

Mitochondrial Electron Transport Chain

Contraction Phase

- 1. Nerve pulse/impulse transmitted through action potential
- 2. Acetylcholine is released at neural juncture \downarrow

3. Action potential transmitted to muscle fiber via the T-tubles to the sarcoplasmic reticulum (SR)

Contraction phase

4. Calcium is released from SR into sarcoplasm ↓

5. Calcium binds to troponin
↓
6. ATP is hydrolyzed (burned)

 \downarrow

7. Energy causes a shift in tropomyosin and actin binding site is exposed

Contraction phase

8. Actin-myosin cross bridge forms (cross bridge is termed actomyosin) 9. ATP hydrolyzed 10. Myosin head rotates 11. Repeated over and over; filaments slide causing shortening of sarcomere

Contraction

DISCONNECTING THE CROSS BRIDGE FROM ACTIN

In order to disconnect the cross bridge from actin, an ATP molecule must bind to its site on the myosin cross bridge.

A sarcomere contracting

Notice that neither filament changes length

Relaxation phase

1. Acetylcholinesterase is released (neutralizes acetylcholine)

2. Calcium pump activated by SR to sequester calcium

3. Actin-myosin cross bridge terminated \downarrow

4. Tropomyosin shifts covering the binding site on actin

Relaxation phase

5. Passive sliding of filaments \downarrow

6. Sarcomere returns to resting state

Thankyou for your patience

