Department of Veterinary Physiology

 MJF College of Veterinary \& Animal Sciences, Jaipur, Rajasthan- 303702 B.V.Sc. \& A.H.

$$
1^{\text {st }} \text { Year (2023-24) }
$$

Respiration during Exercise

Figure 15.16 Nervous and Chemical Mechanisms of Breathing
Several regulatory mechanisms offect Several regulatory mechanisms affect the rate and
indicates that it results in a decrease in breathing.

Dr. Brijesh Kumar Assistant Professor Dept. of Veterinary Physiology

Dr. Sandeep Bissu
Assistant Professor
Dept. of Veterinary Physiology

Humoral Control and Respiration during Exercise

, Humoral Control

- Respiration during Exercise
- Respiratory Changes
- Cardiac Changes
- Circulatory Changes

Non-respiratory functions of lungs

VENTILATION AND CARDIAC RESPONSE DURING EXERCISE (Physiological Adjustment to Exercise)

- Exercise requires the coordination of most of the body's organ systems
- Working muscle can increase its O_{2} consumption by an enormous factor (up to 100 times for individual muscles)
- Requires rapid O_{2} delivery and fast removal of waste and heat.
- Any exercise for more than a few seconds duration
- Requires aerobic respiration to provide enough energy
- Anaerobic glycolysis gives only 2 ATPs/glucose while aerobic respiration gives 36 ATPs/glucose
(a) Higher centers of the brain (speech, emotions, voluntary control of breathing, and action potentials in motor pathways)
(b) Medullary (chemosensitive area) chemoreceptors $\downarrow \mathrm{pH}, \uparrow \mathrm{CO}_{2}$
(c) Carotid and aortic body chemoreceptors $\downarrow \mathrm{pH}, \uparrow \mathrm{CO}_{2}, \downarrow \mathrm{O}_{2}$
(d) Hering-Breuer reflex (stretch receptors in lungs)
(e) Proprioceptors in muscles and joints
(f) Receptors for touch, temperature, and pain stimuli

Figure 15.16 Nervous and Chemical Mechanisms of Breathing
Several regulatory mechanisms affect the rate and depth of breathing. A plus sign indicates that the mechanism increases breathing and a minus sign indicates that it results in a decrease in breathing.

- O_{2} consumption goes up with intensity of exercise because aerobic metabolism must be used to generate ATP
- Glycogen is the main initial fuel source
- Sympathetic nervous system causes glycogen breakdown to glucose
- Liver releases glucose into the blood to supply muscles and brain

Respiratory changes during Exercise

- Tidal volume and respiratory frequency

In heavy exercise respiratory frequency in horses increases from about $15-45$ breathes $/ \mathrm{min}$ at rest to about 130-140 breathes/min

The tidal volume can increase from about $7 \mathrm{~L} / \mathrm{min}$
to about 12-15 L/breath
These 2 factors together increase the pulmonary ventilation from about $210 \mathrm{~L} / \mathrm{min}$ to over $1560 \mathrm{~L} / \mathrm{min}$

The stimuli for increased respiration in exercise are

- Stimuli from motor cortex, from proprioceptors of joint and muscles
- Elevated pulmonary blood flow with elevated venous $\mathrm{CO}_{\text {, }}$

S.N.	Criteria	Normal Respiration	Respiration during Exercise
O_{2} Consumption	C	$40 \mathrm{C}(80 \mathrm{~L} / \mathrm{Min})$.	
Minute ventilation	MV	23 MV	
cardiac output	CO	$5-8 \mathrm{CO}$	
\mathbf{O}_{2} carrying capacity		$150-300 \mathrm{~L} / \mathrm{Min}$.	
Heart Beat	$30 /$ Minute	60% increase	
		$240-250 /$ Minute	

Oxygen consumption

O_{2} consumption is augmented in horses by more than
40 fold between rest and exercise
Maximal O_{2} consumption can reach up to $80 \mathrm{~L} / \mathrm{min}$ for a
440 kg horse

- To provide this increase in O_{2} consumption, minute ventilation, cardiac output and Hb level (by release of stored erythrocytes from spleen) increases

40 -fold increase in O_{2} consumption is provided by 23 fold increase in minute ventilation and 5-8 fold increase in cardiac output.

This is due to the ability to augment O_{2} consumption by 40 fold, cardiac output by 8 fold, O_{2} extraction by 5 fold, 60% increase in O_{2} carrying capacity.

Blogd gases acidosis

, During strenuous exercise horses develop metabolic

- PaCO_{2} increases in horses (in many species, PaCO_{2} falls due to higher respiratory frequency)
- Arterial PO_{2} decreases (reason not known) in horses and human athletes
- Arterial pH declines
- Combined effect of low $\mathrm{PO}_{2}, \mathrm{pH}$ and high temperature delivers more O_{2} to tissues (decreased affinity of Hb to O_{2})
- Respiration is usually not the limiting factor in endurance exercise
- In older horses and during prolonged intense exercise, bleeding from nose (epistaxis) may be observed which is called as exercise-induced pulmonary haemorrhage.

Cardiac Changes during Exercise

- Stroke Volume and Heart Rate Go Up, Increasing Cardiac Output
- In exercise the heart rate of horses rises from about 30 beats/ min to $240-250$ beats $/ \mathrm{min}$; in dogs it is raised from about 100 to 300 beats/min
- The stroke volume is increased in dogs and horses which are due to increased sympathetic nerve activity, increased venous return and increase in EDV.
- Myocardial contractility is increased
- Due to increase in preload and afterload, increase in myocardial O_{2} consumption
- Combined, these adjustments can increase cardiac output (CO) of horses from approximately $30 \mathrm{~L} / \mathrm{min}$ to nearly $150-$ $300 \mathrm{~L} / \mathrm{min}$ ($5-8$ fold increase)
- Cardiac output is controlled by the ANS and by hormones like epinephrine

The increased CO in exercise will cause the pressure to rise from 130/80 to $230 / 100 \mathrm{mmHg}$

The cardiovascular system may be the limiting factor in endurance exercise

- Blood flow increases in pulmonary circulation, coronary vessels and skeletal muscles and in skin but blood flow is decreased in nonworking muscles and splanchnic organs.

Circulatory Response to Exercise

- Skeletal muscle blood flow increases during exercise and this increase is caused by local metabolic control mechanisms.
- From initiation of exercise, metabolic products accumulate in the muscles and O_{2} concentration decreases. Both factors produce vasodilatation of the skeletal muscle arterioles and this vasodilatation is a local response not dependent on nerves or hormones.
- Blood flow increase to the skeletal muscles which delivers more O_{2} and removes the metabolic end products, thus maintaining balance between metabolic activity and blood flow.
- In exercise more blood is shifted to muscle and heart tissue; less blood goes to the viscera and tissues not needed at the moment:
- Flow to skin is initially reduced but is later increased to get rid of excess heat

Tissue	Rest L/min	Exercise L/min
Viscera	1.2	0.6
Muscle \& Heart	1.0	26.0
Other	2.8	3.4
Total	5.0	30.0

- However, there are three compensatory neural mechanisms -
- central command
, Exercise reflex and
- Arterial baroreceptor reflex available to the body to maintain sufficient arterial B.P. and skeletal muscle blood flow.
- Non-neural Mechanisms: Two non-neural mechanisms help to increase cardiac output during exercise.
- Muscle Pump:
- Respiratory Pump:

NON-RESPIRATORY FUNCTIONS OF LUNGS

- THERMAL REGULATION - PANTING
, Defense Function
- Metabolic Function
- Metabolic acidosis
- Metabolic alkalosis
- Respiratory Acidosis
- Respiratory Alkalosis

