

Department of Veterinary Physiology

MJF College of Veterinary & Animal Sciences, Jaipur, Rajasthan- 303702 B.V.Sc. & A.H.

1st Year (2023-24)

Respiration during Exercise

Figure 15.16 Nervous and Chemical Mechanisms of Breathing

Several regulatory mechanisms affect the rate and depth of breathing. A plus sign indicates that the mechanism increases breathing and a minus sign indicates that it results in a decrease in breathing.

Dr. Brijesh Kumar Assistant Professor Dept. of Veterinary Physiology Dr. Sandeep Bissu Assistant Professor Dept. of Veterinary Physiology

Humoral Control and Respiration during Exercise

- Humoral Control
- Respiration during Exercise
 - Respiratory Changes
 - Cardiac Changes
 - Circulatory Changes

Non-respiratory functions of lungs

VENTILATION AND CARDIAC RESPONSE DURING EXERCISE (Physiological Adjustment to Exercise)

- Exercise requires the coordination of most of the body's organ systems
 - Working muscle can increase its O₂ consumption by an enormous factor (up to 100 times for individual muscles)
 - Requires rapid O_2 delivery and fast removal of waste and heat.
- Any exercise for more than a few seconds duration
 - Requires aerobic respiration to provide enough energy
 - Anaerobic glycolysis gives only 2 ATPs/glucose while aerobic respiration gives 36 ATPs/glucose

Figure 15.16 Nervous and Chemical Mechanisms of Breathing

Several regulatory mechanisms affect the rate and depth of breathing. A plus sign indicates that the mechanism increases breathing and a minus sign indicates that it results in a decrease in breathing.

- O₂ consumption goes up with intensity of exercise because aerobic metabolism must be used to generate ATP
- Glycogen is the main initial fuel source
- Sympathetic nervous system causes glycogen breakdown to glucose
- Liver releases glucose into the blood to supply muscles and brain

Respiratory changes during Exercise Tidal volume and respiratory frequency

- In heavy exercise respiratory frequency in horses increases from about 15-45 breathes/min at rest to about 130-140 breathes/min
- The tidal volume can increase from about 7 L/min
 to about 12-15 L/breath
- These 2 factors together increase the pulmonary ventilation from about 210 L/min to over 1560 L/min
- The stimuli for increased respiration in exercise are
 Stimuli from motor cortex, from proprioceptors of joint and muscles
 - Elevated pulmonary blood flow with elevated venous CO₂

S.N.	Criteria	Normal Respiration	Respiration during Exercise
	O ₂ Consumption	C	40C (80L/Min.)
	Minute ventilation	MV	23 MV
	cardiac output	CO 30L/Min.	5–8 CO 150–300L/Min.
	O ₂ carrying capacity		60% increase
	Heart Beat	30/ Minute	240–250/Minute

Oxygen consumption

- O₂ consumption is augmented in horses by more than
 40 fold between rest and exercise
- Maximal O₂ consumption can reach up to 80 L/min for a 440 kg horse
 - To provide this increase in O₂ consumption, minute ventilation, cardiac output and Hb level (by release of stored erythrocytes from spleen) increases
- 40-fold increase in O₂ consumption is provided by 23 fold increase in minute ventilation and 5-8 fold increase in cardiac output.
- This is due to the ability to augment O₂ consumption by 40 fold, cardiac output by 8 fold, O₂ extraction by 5 fold, 60% increase in O₂ carrying capacity.

Blood gases acidosis

- During strenuous exercise horses develop metabolic
- PaCO₂ increases in horses (in many species, PaCO₂ falls due to higher respiratory frequency)
- Arterial PO₂ decreases (reason not known) in horses and human athletes
- Arterial pH declines
- Combined effect of low PO₂, pH and high temperature delivers more O₂ to tissues (decreased affinity of Hb to O₂)
- Respiration is usually not the limiting factor in endurance exercise
- In older horses and during prolonged intense exercise, bleeding from nose (*epistaxis*) may be observed which is called as *exercise-induced pulmonary haemorrhage*.

Cardiac Changes during Exercise

- Stroke Volume and Heart Rate Go Up, Increasing Cardiac Output
- In exercise the heart rate of horses rises from about 30 beats/min to 240-250 beats/min; in dogs it is raised from about 100 to 300 beats/min
- The stroke volume is increased in dogs and horses which are due to increased sympathetic nerve activity, increased venous return and increase in EDV.
- Myocardial contractility is increased
 - Due to increase in preload and afterload, increase in myocardial O₂ consumption
- Combined, these adjustments can increase cardiac output (CO) of horses from approximately 30 L/min to nearly 150-300 L/min (5-8 fold increase)
- Cardiac output is controlled by the ANS and by hormones like epinephrine

- The increased CO in exercise will cause the pressure to rise from 130/80 to 230/100 mmHg
- The cardiovascular system may be the limiting factor in endurance exercise
- Blood flow increases in pulmonary circulation, coronary vessels and skeletal muscles and in skin but blood flow is decreased in nonworking muscles and splanchnic organs.

Circulatory Response to Exercise

- Skeletal muscle blood flow increases during exercise and this increase is caused by local metabolic control mechanisms.
- From initiation of exercise, metabolic products accumulate in the muscles and O₂ concentration decreases. Both factors produce vasodilatation of the skeletal muscle arterioles and this vasodilatation is a local response not dependent on nerves or hormones.
- Blood flow increase to the skeletal muscles which delivers more O₂ and removes the metabolic end products, thus maintaining balance between metabolic activity and blood flow.
- In exercise more blood is shifted to muscle and heart tissue; less blood goes to the viscera and tissues not needed at the moment:
- Flow to skin is initially reduced but is later increased to get rid of excess heat

Tissue	Rest L/min	Exercise L/min
Viscera	1.2	0.6
Muscle & Heart	1.0	26.0
Other	2.8	3.4
Total	5.0	30.0

However, there are three compensatory neural mechanisms -

- central command
- Exercise reflex and
- Arterial baroreceptor reflex available to the body to maintain sufficient arterial B.P. and skeletal muscle blood flow.
- Non-neural Mechanisms: Two non-neural mechanisms help to increase cardiac output during exercise.
- Muscle Pump:
- Respiratory Pump:

NON-RESPIRATORY FUNCTIONS OF LUNGS

- **THERMAL REGULATION PANTING**
- Defense Function
- Metabolic Function
- Metabolic acidosis
- Metabolic alkalosis
- Respiratory Acidosis
- Respiratory Alkalosis

summer and the state of the second state of th