

Department of Veterinary Physiology

MJF College of Veterinary & Animal Sciences, Jaipur, Rajasthan- 303702 B.V.Sc. & A.H.

1st Year (2023-24)

Dissociation Curve

Dr. Brijesh Kumar
Assistant Professor
Dept. of Veterinary Physiology

Dr. Sandeep Bissu
Assistant Professor
Dept. of Veterinary Physiology

Dissociation Curve

- Oxy-Haemoglobin Dissociation Curve
- Bohr's Effect
- CO₂ Equilibration Curve
- C-D-H effect

Oxy-Haemoglobin Dissociation Curve

- The loading and unloading of O₂ from Hb is described by oxy-haemoglobin dissociation curve.
- If Hb is allowed to equilibrate with various partial pressures of O₂ and the values are expressed in a graph plotted between the percentages of Hb on the ordinate against the partial pressure of O₂ on the abscissa, the curve obtained is called oxyhaemoglobin dissociation curve.
- For oxy-Hb the curve is "S" shaped

Dissociation Curve

- For myoglobin (a muscle pigment capable of combining with O₂) the dissociation curve is rectangular hyperbola
- Under normal conditions, at a PO₂ of 100-mm Hg, blood leaving the lungs is 95–98 % saturated with O₂. Further increase in PO₂ do not increase O₂ carrying capacity of blood and the increased PO₂ increase the amount of O₂ in physical solution according to Henry's law.
- Because the hemoglobin is almost saturated when it leaves the lungs, it is the hemoglobin concentration that determines the amount of O₂ transported in blood

Volume of O₂ combined with haemoglobin

- One molecule of Hb can combine with 4 molecules of O₂
- One gram of Hb can transport 1.34ml of O₂
- The volume of O_2 combined with Hb in each 100 ml blood is = Haemoglobin concentration (g %) X volume of O_2 in each gram of Hb (ml/g) X Oxygen saturation (decimal) at the partial pressure of measurement.
- If Hb = 15g%, O₂ saturation 97.5 %,
- then 100 ml blood can transport 15 X 1.34 X
 0.975 = 19.6 ml/100 ml or 19.6 volumes percent.

- 100 ml of blood carries 19.9 ml of O_2 i.e. 19.6 ml in combination with haemoglobin and 0.3 ml in physical solution (98-99 % O_2 is transported in combination with haemoglobin).
- If Hb were not present, it would take 66.3 times more blood to transport the same amount of O_2 .
- At a PO₂ of 100 mmHg in arterial blood, Hb is 97.5% saturated with O₂ and can transport 19.6 volumes percent O₂, when Hb concentration is 15g/100 ml blood.
- As the arterial blood reaches the tissue, O_2 is unloaded from the blood to tissues, the O_2 saturation falls to about 72 % in venous blood.
- At 72 % saturation of O_2 , the blood will have 14.5 ml O_2 (Hb. 15g %). Each 100-ml blood unloads approximately 5 volume percent of O_2 and this is called *arteriovenous* O_2 *difference*.
- PO₂ of venous blood is 40 mm Hg.
- P_{50} of hemoglobin is that PO_2 at which haemoglobin is 50 % saturated with O_2 . In human it is 26.6mmHg. It indicates affinity of hemoglobin for O_2
- P₅₀ is similar for all Hb concentrations.

- Shift of dissociation curve to right results is greater release of O_2 from oxy Hb, i.e. a shift to right decrease the affinity of Hb to O_2 .
- A shift to left increases the affinity of Hb to O₂. Hence, O₂ released from Hb is decreased.
- The extent of dissociation depends on (i.e.,) the positioning of the oxy haemoglobin dissociation curve is influences by.
 - O₂ tension
 - CO₂ tension
 - H⁺ ion concentration
 - Temperature
- Concentration of BPG (2-3 bisphosphoglycerate) in erythrocytes
- Increase in H⁺ ion concentration and CO₂ level shifts the curve to down and right as also increase in temperature and 2-3 BPG.

- The 2-3 BPG is normally present in erythrocytes in higher level than in other cells, it is a by product of glycolytic pathway and its level increases further during chronic hypoxia as during exposure to high altitude, anemia, increased physical exertion etc. When 2-3 BPG binds with hemoglobin, affinity of hemoglobin for O₂ is reduced and O₂ unloading is increased. Shifting the curve to down and right causes increase in release of O₂ from the Hb. Ruminant hemoglobin is unresponsive to 2-3 BPG.
- When metabolic rate of a tissue is increased, both pCO₂ and H⁺ concentration increases; increased metabolic rate also increases heat production and temperature.
- The reduction in pH and rise in temperature reduces the affinity of hemoglobin for O_2 shifting the oxy-hemoglobin curve to the right, thereby increasing the unloading of O_2 at the tissue level. When the pH is reduced from 7.4 to 7.2, the hemoglobin saturation is reduced from 72 to 60% indicating greater unloading of O_2 .

- The shift of oxy-Hb dissociation curve to down and right by increased CO₂ tension and H⁺ ion concentration is termed as Bohr's effect. An increasing concentration of H⁺ and/or CO₂ will reduce the affinity of haemoglobin to O₂.
- This facilitates more O_2 unloading in the tissues especially in tissues with greater demand for O_2 like when a tissue's metabolic rate is increased with increase in CO_2 production.
- The pH of the tissue decreases, and it promotes the dissociation of O_2 from hemoglobin to the tissue, allowing the tissue to obtain enough O_2 to meet its demands.
- Conversely, in the lungs, where O₂ concentration is high, binding of O₂ causes hemoglobin to release H⁺, which combines with HCO₃ to drive off CO₂ to alveoli.
- Since these two reactions are closely matched, there is little change in blood pH.

CO₂ Equilibration Curve

- The total quantity of CO₂ combined with blood in all forms of transport of CO₂ depends on PCO₂, which can be expressed through the CO₂ equilibration curve.
- Normal blood PCO₂ is 40 mm Hg in arterial blood containing 48 volumes percent CO₂.
- In venous blood PCO₂ is **45 mmHg** containing **52 volumes percent CO₂** and 4 volumes percent of CO₂ is actually exchanged in the process of transporting CO₂ from tissues to lungs. Valedictory

CO2 equilibration curve

- The effect of O₂ on H⁺ ion and CO₂ loading and unloading from haemoglobin is known as Haldane effect or C-D-H effect. i.e. oxygenation of hemoglobin reduces it's ability to bind with CO₂ Deoxygenation of the hemoglobin increases its ability to carry CO₂.
- This is a consequence of the fact that reduced (deoxygenated) hemoglobin is a better proton (H+) acceptor than the oxygenated form.
- The upper part of the curve indicates that for every mm Hg increase in PCO₂, a greater volume of CO₂ is transported in venous blood than arterial blood which is due to the **Haldane effect**.
- If Haldane effect were not there, to transport the 4 volumes percent, PCO₂ of venous blood would have to be raised to 52 mm Hg.

