Department of Veterinarv Phvsioloav

 MJF College of Veterinary \& Animal Sciences, Jaipur, Rajasthan- 303702B.V.Sc. \& A.H.
$1^{\text {st }}$ Year (2023-24)

Dissociation Curve

Dr. Brijesh Kumar
Assistant Professor
Dept. of Veterinary Physiology

Dr. Sandeep Bissu
Assistant Professor Dept. of Veterinary Physiology

Dissociation Curve

- Oxy-Haemoglobin Dissociation Curve
- Bohr's Effect
- CO_{2} Equilibration Curve
- C-D-H effect

Oxy-Haemoglobin Dissociation Curve

- The loading and unloading of O_{2} from Hb is described by oxy-haemoglobin dissociation curve.
- If Hb is allowed to equilibrate with various partial pressures of O_{2} and the values are expressed in a graph plotted between the percentages of Hb on the ordinate against the partial pressure of O_{2} on the abscissa, the curve obtained is called oxyhaemoglobin dissociation curve.
- For oxy-Hb the curve is " S " shaped

Dissociation Curve

- For myoglobin (a muscle pigment capable of combining with O_{2}) the dissociation curve is rectangular hyperbola
- Under normal conditions, at a PO_{2} of $100-\mathrm{mm} \mathrm{Hg}$, blood leaving the lungs is $95-98 \%$ saturated with O_{2}. Further increase in PO_{2} do not increase O_{2} carrying capacity of blood and the increased PO_{2} increase the amount of O_{2} in physical solution according to Henry's law.
- Because the hemoglobin is almost saturated when it leaves the lungs, it is the hemoglobin concentration that determines the amount of O_{2} transported in blood

Volume of O_{2} combined with haemoglobin

- One molecule of Hb can combine with 4 molecules of O_{2}
- One gram of Hb can transport 1.34 ml of O_{2}
- The volume of O_{2} combined with Hb in each 100 ml blood is = Haemoglobin concentration ($\mathrm{g} \%$) X volume of O_{2} in each gram of $\mathrm{Hb}(\mathrm{ml} / \mathrm{g}) \times$ Oxygen saturation (decimal) at the partial pressure of measurement.
- If $\mathrm{Hb}=15 \mathrm{~g} \%, \mathrm{O}_{2}$ saturation 97.5%,
- then 100 ml blood can transport 15 X 1.34 X $0.975=19.6 \mathrm{ml} / 100 \mathrm{ml}$ or 19.6 volumes percent.
- 100 ml of blood carries 19.9 ml of O_{2} i.e. 19.6 ml in combination with haemoglobin and 0.3 ml in physical solution ($98-99 \mathrm{HO}_{2}$ is transported in combination with haemoglobin).
- If Hb were not present, it would take 66.3 times more blood to transport the same amount of O_{2}.
- At a PO_{2} of 100 mmHg in arterial blood, Hb is 97.5% saturated with O_{2} and can transport 19.6 volumes percent O_{2}, when Hb concentration is $15 \mathrm{~g} / 100 \mathrm{ml}$ blood.
- As the arterial blood reaches the tissue, O_{2} is unloaded from the blood to tissues, the O_{2} saturation falls to about 72% in venous blood.
- At 72% saturation of O_{2}, the blood will have $14.5 \mathrm{ml} \mathrm{O}_{2}$ ($\mathrm{Hb} .15 \mathrm{~g} \%$). Each $100-\mathrm{ml}$ blood unloads approximately 5 volume percent of O_{2} and this is called arteriovenous O_{2} difference.
- PO_{2} of venous blood is 40 mm Hg .
- P_{50} of hemoglobin is that PO_{2} at which haemoglobin is 50% saturated with O_{2}. In human it is 26.6 mmHg . It indicates affinity of hemoglobin for O_{2}
- P_{50} is similar for all Hb concentrations.
- Shift of dissociation curve to right results is greater release of O_{2} from oxy Hb , i.e. a shift to right decrease the affinity of Hb to O_{2}.
- A shift to left increases the affinity of Hb to O_{2}. Hence, O_{2} released from Hb is decreased.
- The extent of dissociation depends on (i.e.,) the positioning of the oxy haemoglobin dissociation curve is influences by.
$-\mathrm{O}_{2}$ tension
- CO_{2} tension
- H^{+}ion concentration
- Temperature
- Concentration of BPG (2-3 bisphosphoglycerate) in erythrocytes
- Increase in H^{+}ion concentration and CO_{2} level shifts the curve to down and right as also increase in temperature and 2-3 BPG.
- The 2-3 BPG is normally present in erythrocytes in higher level than in other cells, it is a by product of glycolytic pathway and its level increases further during chronic hypoxia as during exposure to high altitude, anemia, increased physical exertion etc. When 2-3 BPG binds with hemoglobin, affinity of hemoglobin for O_{2} is reduced and O_{2} unloading is increased. Shifting the curve to down and right causes increase in release of O_{2} from the Hb . Ruminant hemoglobin is unresponsive to 2-3 BPG.
- When metabolic rate of a tissue is increased, both pCO_{2} and H^{+} concentration increases; increased metabolic rate also increases heat production and temperature.
- The reduction in pH and rise in temperature reduces the affinity of hemoglobin for O_{2} shifting the oxy-hemoglobin curve to the right, thereby increasing the unloading of O_{2} at the tissue level. When the pH is reduced from 7.4 to 7.2 , the hemoglobin saturation is reduced from 72 to 60% indicating greater unloading of O_{2}.
- The shift of oxy-Hb dissociation curve to down and right by increased CO_{2} tension and H^{+}ion concentration is termed as Bohr's effect. An increasing concentration of H^{+}and/or CO_{2} will reduce the affinity of haemoglobin to O_{2}.
- This facilitates more O_{2} unloading in the tissues especially in tissues with greater demand for O_{2} like when a tissue's metabolic rate is increased with increase in CO_{2} production.
- The pH of the tissue decreases, and it promotes the dissociation of O_{2} from hemoglobin to the tissue, allowing the tissue to obtain enough O_{2} to meet its demands.
- Conversely, in the lungs, where O_{2} concentration is high, binding of O_{2} causes hemoglobin to release H^{+}, which combines with HCO_{3} to drive off CO_{2} to alveoli.
- Since these two reactions are closely matched, there is little change in blood pH.

CO_{2} Equilibration Curve

- The total quantity of CO_{2} combined with blood in all forms of transport of CO_{2} depends on PCO_{2}, which can be expressed through the CO_{2} equilibration curve.
- Normal blood PCO_{2} is 40 mm Hg in arterial blood containing 48 volumes percent CO_{2}.
- In venous blood PCO_{2} is 45 mmHg containing 52 volumes percent CO_{2} and 4 volumes percent of CO_{2} is actually exchanged in the process of transporting CO_{2} from tissues to lungs. Valedictory

CO2 equilibration curve

- The effect of O_{2} on H^{+}ion and CO_{2} loading and unloading from haemoglobin is known as Haldane effect or C-D-H effect. i.e. oxygenation of hemoglobin reduces it's ability to bind with CO_{2} Deoxygenation of the hemoglobin increases its ability to carry CO_{2}.
- This is a consequence of the fact that reduced (deoxygenated) hemoglobin is a better proton $\left(\mathrm{H}^{+}\right)$acceptor than the oxygenated form.
- The upper part of the curve indicates that for every mm Hg increase in PCO_{2}, a greater volume of CO_{2} is transported in venous blood than arterial blood which is due to the Haldane effect.
- If Haldane effect were not there, to transport the 4 volumes percent, PCO_{2} of venous blood would have to be raised to 52 mm Hg .

