STREPTOCOCCI

Learning objectives

To know in detail about

- Morphology, cultural and biochemical characteristics of streptococci
- Classification of streptococci
- Toxins and virulence factors of streptococci
- Diseases caused by streptococci in domestic animals
- Distinguish between streptococci and staphylococci
- General approaches uesed to isolation and identification streptococci
- Dick test, scarlet fever and CAMP test
- Strangles in horses

• SYSTEMATICS

Domain	Bacteria	
Phylum	Firmicutes	
Class	Bacilli	
Order	Lactobacillales	
Family	Streptococcaceae	
Genus	Streptococcus	
Species	S. agalactiae, S.dysgalactiae, S. equi subsp zooepidemicus, S.uberis, S. equi subsp equi, S. canis, S.suis, S. pyogenes(human)	

С

HISTORY

- Rivolta (1873) described chain forming organisms in pus from a case of strangles in horses.
- In 1878-79, Pasteur recognized this organism as a pus-forming agent.
- In 1903, Hugo Schottmuller introduced blood to differentiate various types ofhemolysis.
- In 1928, Rebecca Lancefield reported a serological method of grouping streptococci.

HABITAT

- Streptococci are world wide in distribution.
- Most of the streptococci of Veterinary interest live as commensals in the mucosa of the upper respiratory and lower urogenital tracts.
- They do not survive for long away from the animal hosts.

MORPHOLOGY

- Streptococci are Gram positive, spherical or ovoid cells, arranged in chains or pairs.
- Chain formation is due to the cocci dividing in one plane only and the daughter cells failing to separate completely. Each coccus is about 1 mm in diameter.
- They are facultative anaerobes, catalase negative, oxidase-negative, and non-spore forming and non-motile with exception of some of the enterococci.
- Capsulation is not a regular feature of streptococci but some strains of *S.pyogenes* and some group C strains have capsules composed of hyaluronic acid while polysaccharide capsules are encountered in members of group B and D.
- Protoplasts (L-forms) may be induced by penicillin or phage associated lysine and may be propagated on hyper tonic media.

CLASSIFICATION

• Several systems of classification have been employed. Based on growth characteristics, type of haemolysis and biochemical activities they can be divided into 6 principal categories.

Group	Examples		
Pyogenic Streptococci	S. pneumoniae, S.pyogenes, S.equi, S. dysgalactiae		
Oral Streptococci	S.salivarius		
Enterococci	S.faecalis, S.avium, S. gallinarum		
Lactic acid Streptococci	S.lactis		
Anaerobic Streptococci	S. monbillorum		
Other Streptococci	S.bovis, S.uberis, S.equi subsp zooepidemicus		

- The aerobic and facultative anaerobic streptococci are classified, based on their haemolytic properties.
- Brown (1919) established this method by employing meat infusion peptone agar with 5% horse blood. He recognized three types of reactions.

- alpha haemolytic streptococci: They produce a greenish discolouration with partial haemolysis around the colonies.
- The zone of lysis is small (10r2 mm wide), within which the unlysed erythrocytes are seen.
- $\circ~$ These $\dot{\alpha}$ streptococci are generally commensals in the throat. Because of the distinctive green color, they produce; they are called as greening or viridans streptococci. Eg. S.pneumoniae
- Beta haemolytic streptococci produces a sharply defined, clear, colourless zone of haemolysis, 2 or 4mm wide, within which the red cells are completelylysed.
- $\circ~$ Most of the pathogenic streptococci fall into the beta group and are called as the haemolytic streptococci.
- \circ $\;$ Gamma or non-haemolytic streptococci produces no change in the medium.
- The gamma streptococci includes the faecal streptococci (*S. faecalis*) and related species. They are called the enterococcus or indifferent streptococci.
- Another important way in which the beta haemolytic streptococci were classified by Rebecca lancefield (1933) was based on the nature of a carbohydrate (C) antigen on the cell wall. They are known as Lancefield groups, 19 of which have been identified so far and named by the capital letters A-U (without I and J)

Lan cefi eld gro up	Species	Host	Disease
Α	Streptococ cus pyogenes	Human s	Scarlet fever , Septic sore throat, erysipelas, abscesses and rheumatic fever
В	S. agalactiae	Cattle, sheep and goats	Chronic mastitis
		Human and dogs	Neonatal septicaemia
		Cats	Kidney and uterine infections
С	S. dysgalacti ae	Cattle	Acute mastitis
		Lambs	Polyarthritis
	S. dysgalacti ae subsp. equismilis	Horse	Abscesses, endometritis and mastitis
	S. equi. subsp.equi	Horse	Strangles , genital and suppurative conditions, Mastitis and purpura haemorrhagica
	S. equi subsp. zooepidem	Horse	Mastitis, abortion, secondary Pneumonia and navel

icus		infections
	Cattle	Metritis & Mastitis
	Pigs	Septicaemia & arthritis in 1-3 wk old piglets

		Poultry	Septicaemia & Vegetative Endocarditis
		Lambs	Pericarditis and Pneumonia
D	Enterococc usfaecalis	Many species	Opportunistic infections
	S. equines and S. bovis	Many species	Opportunistic infections
E (P,U, V)	S. Porcinus	Pigs	Jowl abscesses and lymphadenitis
G	S. canis	Carniv ores	Neonatal septicaemia, genital, skin and wound infections
		Cattle	Occasional mastitis
Ν	Lactococcu s lactis	Cattle	unknown
Q	Enterococc usavium	Many species	unknown
R	S.suis type 2	Pigs (4 to 6 months)	Meningitis and arthritis
S	S.suis type 1	Pigs (2 to 4wks old)	Meningitis and arthritis
Un group able	S.uberis	Cattle	Mastitis
	S.pneumo niae	Guinea pigs, rats and primat es	Pneumonia

- Haemolytic streptococci of group A are known as *S.pyogenes* . These may be further subdivided into types based on the protein (M,T and R) antigens present on the cell wall.
- The M protein is acid and heat labile and the T protein is acid labile and trypsinresistant.
- Some of the Lancefield groups may be further subdivided by means of the agglutination test and designated by Arabic numbers-Griffith typing

CULTURAL CHARACTERISTICS

- It is an aerobe and facultative anaerobe, growing best at a temperature of 37°C. They grow best in media enriched with blood, serum and fermentable carbohydrates.
- On blood agar after incubation for 24hrs small, circular, semitransparent colonies with an area of clear haemolysis are produced.

- Virulent strains from fresh isolates produce matt (finely granular) colony and avirulent strains form glossy colonies. Strains producing capsules form mucoidcolonies.
- In glucose or serum broth, growth occurs as a granular turbidity with a powdery deposit. No pellicle is formed.
- In Edwards's medium (selective media) it produces dewdrop like black colonies.

- Edwards medium containing blood agar, crystal violet and aesculin (differentiate among different species of streptococci which do or do not hydrolyse aesculin).
- *S. pneumoniae* is alpha haemolytic, produces mucoid or flat colonies with smooth borders and a central concavity after 48-72hrs on blood agar (draughts man colonies).
- Ability to grow in 0.1 % tellurite broth is characteristic of *S. faecalis*. Majority of streptococcal species do not grow on Mac Conkey agar except Enterococcus faecalis.

BIOCHEMICAL PROPERTIES

- Streptococci are catalase and oxidase negative . (Click here for visual catalse test)
- Ferment several sugars producing acid but no gas.
- They ferment sorbitol, trehalose, lactose, maltose, dextrin, and mannitol.
- Gelatin not liquified.
- Nitrates not reduced.
- Indole is negative.
- They are not soluble in 10% bile unlike pneumococci

RESISTANCE

- It is a delicate organism easily destroyed by heat (54° C for 30 minutes).
- It can survive in dust for several weeks, if protected from sunlight.
- It is rapidly inactivated by antiseptics.
- It is more resistant to crystal violet and susceptible to sulphonamides and otherantibiotics.
- Sensitivity to bacitracin is employed as a convenient method for differentiating *S. pyogenes* from other hemolytic streptococci.

ANTIGENECITY

- The hyaluronic acid capsule of *S. pyogenes* inhibits phagocyotosis.
- The cell wall is composed of an outer layer of fimbria containing proteins and lipoteichoic acid, a middle layer of group specific carbohydrate and an inner layer of peptidoglycan.
- The Cell wall polysaccharide has been shown to have a toxic effect on connective tissue in experimental animals.
- The peptidoglycan is responsible for cell wall rigidity. Several protein antigens have been identified in the cell wall (M, T and R).
- They are responsible for type specificity in *S.pyogenes*. Among these the M protein acts as a virulence factor by inhibiting phagocytosis.
- Hair-like pili project through the capsule of group A streptococci.
- The pili consist partly of M protein and are covered with lipoteichoic acid which isimportant in the attachment of streptococci to epithelial cells.

TOXINS AND VIRULENCE FACTORS

• Streptococci form several exotoxins and enzymes, which contribute to its virulence.

Extra cellular toxinsHemolysins

- Streptolysins O and S are produced by groups A, C and G.Streptolysin O
- It is so called because it is oxygen labile. It is an antigenic protein and is active in the reduced form.
- On blood agar, its activity is seen only in pour plates and not in surface cultures. It is also heat labile.
- It is lethal on I/V inj. into animals and has a specific cardiotoxic activity. It is a general cytotoxin.
- Red cells of all animal species except mouse are lysed. Streptolysin O is antigenic and antistreptolysin regularly appears in sera following Streptococcal infection.
- Estimation of this antibody (ASO) titre is a standard serological procedure for the retrospective diagnosis of infection with *S.pyogenes*.

Streptolysin S

- It is an oxygen stable haemolysin and so is responsible for the beta haemolysis seen around streptococcal colonies on the surface of blood agar plates.
- It is called Streptolysin S since it is soluble in serum. Addition of serum to broth increased the yield of haemolysin.
- It is protein but not antigenic. It has been shown experimentally to be nephrotoxic. Erythrogenic toxin (Streptococcal pyogenic exotoxins/ Dick toxin)
- Four erythrogenic toxins are known and most strains of *S. pyogenes* produce one or more. They are pyogenic andenhance susceptibility to lethal shock by endotoxin.
- The toxin is thermostable and antigenic. The intradermal injection in rats leads to development of erythema.
- This reaction is called as -Dick test or Schultz-charlton reaction and it is useful for diagnosis of scarlet fever.

Enzymes

- Streptokinase (Fibrinolysin): Filtrates of streptococci gp, A, E & G produces fibrinolysin. This toxinpromotes the lysis of fibrin clots by activating a plasminogen.
- Fibrinolysin plays a biological role in streptococcal infections by breaking down the fibrin barrier around the lesions and facilitating the spread of infection.
- Deoxyribonucleases (Streptodornase): These cause depolymerisation of DNA, pyogenic exudates contains large amount of DNA, derived from the nuclei of necroticcells.
- Streptodornase helps to liquefy the thick pus and may be responsible for the thin serous character of streptococcal exudates.
- Four antigenically distinct streptodornase, A, B, C & D have been recognized.
- *Hyaluronidase*: This enzyme breaks down the hyaluronic acid of the tissues. This might favour the spread of infection along intercellular spaces.
- Streptococci possess a hyaluronic acid capsule and also elaborate a hyaluronidase- a seemingly self-destructive process. This is produced by group A, C, G and B Streptococci.
- *Proteinase:* This is another instance of an apparently self-destructive enzyme, since it is capable of breaking down the M protein, streptokinase and hyaluroindase.
- The enzyme is, however, produced only underspecial conditions^C such as an acidic pH (5.5 −6.5). Such conditions may be produced by tissue destruction, as in abscesses.
- Most strains of S. pyogenes form proteinase.
- *Neuraminidase:* This activity is detected in streptococci groups A, B, C, G and L. This enzyme is a virulence factor for pathogens surviving on mucosal surface.

In addition to this M types of *S.pyogenes* produce NADase and other many strains also produce esterase, amylase and N-acetyl glucosaminidase.

Serum opacity factor

- When group A. streptococci is grown in horse serum it produces an opalescence of the serum. This opacity factor is a protein.
- This is a lipoproteinase and opalescence is a result of an agglomeration of the bacterial antigen.

PATHOGENESIS

- The natural habitat of the species of streptococci are skin, nose, throat, digestive and urogenital tracts of man and animals.
- *S.pyogenes* are present in human nose and throat without causing any disease, while *S.agalactiae* and *S.uberis* can exist in bovine udder without causing mastitis.

PATHOGENECITY

Cattle: Bovine mastitis

- It is caused by *S. agalactiae* (group B), *S. dysgalactiae* (grp C), *S. equi* subsp. *zooepidemicus* (grp. C), *S. uberis* (grp C, D, E, P, V).
- Mastitis arises from the multiplication of streptococci in the teat sinus and extends into the ducts.
- It causes parenchymatous mastitis, which is characterized by progressively chronic condition resulting in fibrosis.
- In acute stages milk is composed of purulent exudate, dead tissue cells, coagulated milk protein and bacteria.
- *Peptostreptococcus indolicus* is an anaerobic streptococcus, which is responsible

for summer mastitis in cattle in association with *Arcanobacterium pyogenes*.

Horse

- S. equi and S. equisimilis are the main causes of strangles in young horses.
- It is characterized by a catarrhal discharge, with inflamation of the nasal mucous membranes, followed by swelling of pharyngeal LN's in which abscesses develop.
- The infection spreads through lymph channels. It also causes metritis andcervicitis in horses.
- Purpura haemorrhagica, considered to be an immune mediated disease, occur inhorses 1 to 3 weeks after illness.
- Bastard strangles in which abscesses developed in many organs. It is a veryserious complication.

Chicken

• *S. gallinarum* causes typical acute septicemia with peritonitis in chicken.

Dogs

• *S. canis* is considered to be the cause of acid milk in puppies and canine tonsillitis. It is also associated with neonatal septicaemia and toxic shock syndrome.

Pigs

- *S. suis* causes porcine cervical lymphadenitis and also isolated from pneumonia, septicaemia, arthritis, endocarditis, meningitis and reproductive tract infections.
- It also causes erosive arthritis in young pigs.

DIAGNOSIS

• It involves clinical, microscopical and bacteriological examination.

Clinical examination

- Palpation of the udder and supramammary lymphnodes will be helpful in distinguishing the chronic and insidious form of mastitis produced by *S.agalactiae* and *S.uberis*.
- In contrast *S.dysgalactiae* and *S. zooepidemicus* causes sudden onset of acute inflammation of one quarter only with an acute systemic disturbance followed by joint infections and lameness.

Microscopical examination

• When long chains of organisms are detected in milk samples from chronic mastitis, it is caused by *S. agalactiae*.

Based on type of haemolysis on blood agar

Bacteriological examination

- When 0.1 ml of secretions inoculated on Edward's medium (blood agar, crystal violet and aesculin) *S.agalactiae* produces bluish-grey colonies and *S.uberis* produces darkcolor colonies.
- CAMP test (Christie, Atkins, Munch and Peterson, 1944)
 - This test is based on the observation that ruminant red blood cells lysed by the beta toxin of staphylococci at 370C are completely lysed in the presence of *S.agalactiae* (group B).
 - Differentiation between the pneumococcus and *S.viridans* organisms can beachieved by bile solubility and the optochin test.
- Bile solubility test
 - Autolysis of pneumococcal cultures takes place within 15 minutes at 370C in the presence of 10 per cent sodium deoxycholate.
 - These substances have no effect on *S. viridans* organisms.
- The optochin test
 - The majority of pneumococcal strains are sensitive to optochin (Ethyl hydrocuprein hydrochloride). Whereas *S.viridans* organisms are not.
 - This test consists of placing a small circular piece of filter paper, impregnated with 1:4000 aqueous solution of optochin, in the center of a blood agar plate after inoculating the test cultures in streaks across the full width of the medium.
 - The growth of pneumococcal strains will be inhibited to a distance of some 5mm from the circumference of the filter paper.

CONTROL AND PREVENTION

- In streptococcal infections in animals, including mastitis, the most satisfactory method of control is antibiotic therapy using penicillin preparations to other substances because streptococci develop resistance to penicillin comparatively infrequently.
- Vaccines are of very limited value for the immunization of animals against streptococcal infections, with the possible exception of equine strangles.

S.pyogenes (group. A) is the most usual cause of septic sore throat and scarlet feverin humans.