
"Scatter Radiations and its Control"

SCATTER RADIATIONS

- Radiation which deviates from the primary beam both in direction and wavelength after interacting with a medium or a patient being exposed to x-rays.
- Forward scatter: if angle of scattering from primary beam is less than 90⁰
- **Back Scatter:** if angle of scattering from primary beam is more than 90⁰
- Scatter radiations are also hazardous to person working in radiology section

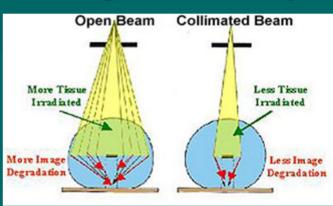
Filters

- It is placed in between the patient and x-ray tube to remove less energetic (soft) x-rays from the primary beam which have no chance to reach the film.
- Filtered x-ray beam decreases the exposure dose of the patient and scatter radiation.
- Components of filtration
 - Inherent filtration: Glass envelope, insulating oil, backelite window.
 - >Added filtration: Aluminium and Copper filters.

Wedge Filters:

- It is made of aluminium or lead acrylic i.e. 30% lead by weight
- ► Used in the situation where there is large variation in thickness of tissues.

Scatter Radiation Control Devices Beam Collimators


Collimation- regulation of x-ray beam, by beam restricting devices to restrict it to the part of the patient under examination.

Advantages

- Reduction in scatter radiation
- Improves the radiographic quality
- Decrease in patients dose by reducing the area being exposed Open Beam Collimated Beam

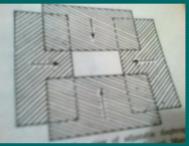
Types

- Aperture diaphragm
- Cones and cylinders
- Variable aperture collimator

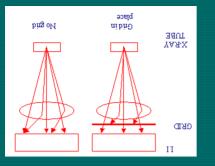
Aperture Diaphragm

• Simplest collimator

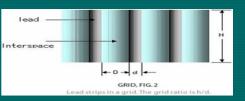
- Made up of sheet of lead with circular, square or rectangular hole in the centre.
- Disadvantages:
 - > Fairly large penumbra formation at the periphery.
 - Inconvenience: separate size of diaphragm is required for each size of the film.


Cones and Cylinders

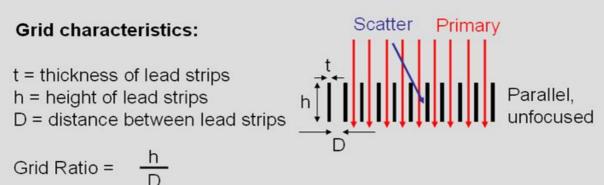
- Conical or cylindrical metal tubes that channel an x-ray beam to the required field size.
- Base is made up of lead to absorb x-rays
- Both are ineffective in removing penumbra
- Cylinder producing comparatively less penumbra because beam collimation takes place at its far.
- Since size of cones and cylinders is fixed, these are appropriate only for specific radiographic examinations.



Variable Aperture Collimator


- Beam restricting device with adjustable lead shutter.
- Advantages
 - X-ray beam can be adjusted to a variety of rectangular shapes and sizes
 - Exposure field can be illuminated to permit its visualization
 - Penumbra is greatly reduced

 Adjustable lead shutter exposes only the area of interest, thus reducing the patient dose.



Grid

- Grid is a flat plate of alternating radioopaque (lead) and radiolucent (plastic or aluminium) strips encased in a protective covering of thin aluminium.
- Improve contrast by reducing scatter radiation
- Used when thickness of the part being radiographed measures
 - 10cm.
- It is placed between the part to be examined (patient) and cassette so as to absorb scatter radiation falling on the film.
- Grid removed large quantity of x-rays required to produce desired radiographic density and thus exposure factors have to be increased to compensate for the loss by grid.

Grid Ratio

It is the ratio of the height of lead strips to the distance between the strips.

- It expresses grid's ability to absorb scatter radiations
- High ratio grids absorb more scatter radiation
- Higher ratio grids are recommended for higher kVp range
- If exposure made under 90kVp grid ratio 8:1 or 10:1 preferred.
- In general, grid ratio ranges from 4:1 to 16:1.

Grid Frequency

- It is the number of lead strips per inch in a grid.
- Most grids have frequencies in the range 60-110 lines/inch

energy scatter radiation.

• Grid selectivity-Ratio of transmitted primary radiation to transmitted scatter radiation.

-High ratio grids have higher grid selectivity

 Contrast improvement factor of a grid-Ratio of contrast of a radiograph with grid to contrast without grid.

-Radiographic contrast is almost double with the use of grid.

High ratio grid CIF higher.

 Bucky factor-Ratio of incident radiation falling on grid to radiation transmitted through grid.

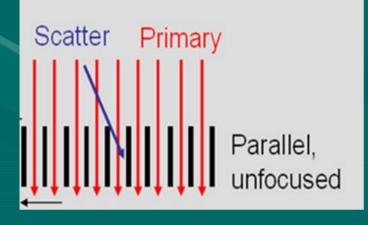
-It measures total quantity of radiation absorbed by grid.

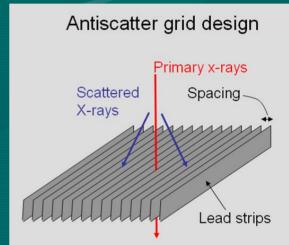
-High ratio grid having higher value of bucky factor.

-Higher bucky factor results in more radiation exposure to the patient.

Grid Cut-Off-Loss of primary radiation as a result of undesirable absorption.

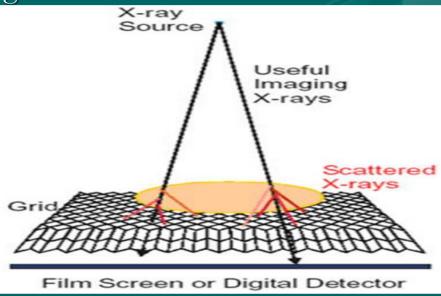
-Grid cut-off higher with higher ratio grid.


Types of Grids


Parallel Grid

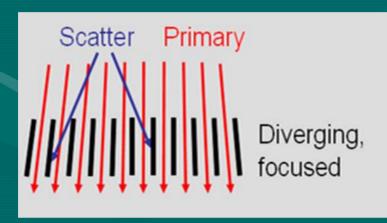
Lead strips are placed parallel to each other.

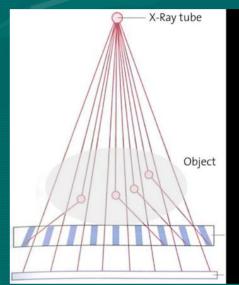
Advantage- X-ray tube can be angled along the length of the grid without grid cut-off.


Limitation- FFD must be 120cm or more which is undesirable.

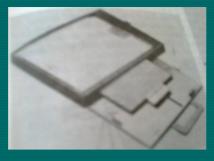
Crossed Grid

- It consists of two superimposed parallel grids placed at right angle to each other.
- More efficient in absorbing scatter radiations
- X-ray beam must be centered at right angle to a crossed grid.




Types of Grids

Focussed Grid


▶It may be parallel or crossed.

- In this, lead strips are angled increasingly towards edges.
- Perpendicular distance between surface of the grid and convergent point is called grid focal distance.

Moving Grid/ Potter-Bucky Diaphragm/ Bucky Diaphragm/ Bucky Grid

- It is a focussed grid that moves mechanically across the x-ray beam during a radiographic exposure.
- It moves at a uniform speed adjusted to exposure time.
 Grid is usually fixed underneath the x-ray table.
- Disadvantages- Cost, Mechanical failure, Noise, limitation of exposure time, Relatively more exposure due to increased grid cut-off.

Air gap Technique

- Distance between the patient and film which allows a quantity of scatter radiation to escape without interacting with the film.
- Genrally the distance kept between the patient and film for air gap technique is 6-9cm.

THE END

