## Exchanges of gases in lungs and tissues

$\square$ Diffusion of gases across the Alveolar Membrane
$\square$ Diffusion of gases across the Tissue layer - OXYGEN TRANSPORT

## Composition of Gases

$\square$ The composition of inspired air (given in table) is equal to that of atmosphere and contains water vapour at a concentration related to that environment (as temperature increases level of water vapour increases).
$\square$ The inspired aircontains about $21 \% \mathrm{O}_{2}$.
$\square$ As the air passes through the respiratory airways it is warmed to body temperature and saturated with water vapour.
$\square$ Thus, the composition is altered to accommodate an additional amount of water vapour and still maintain the total pressure of atmosphere.
$\square$ The amount of water vapour added is dependent on the animals' body temperature.

- In a dog, with a body temperature of 37.5 to $39.5^{\circ} \mathrm{C}$, the water vapour pressure in respiratory passage is 47 mmHg . Therefore, the composition of lower respiratory tract air differs from inspired air.


## Compo sition air of

| Gas | Inspired <br> Air <br> (dry) \% | Expired Air <br> (dry) \% | Diffiference <br> $\%$ | Alveolar Air <br> (dry) \% |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}_{2}$ | 20.93 | 16.29 | 4.64 | 14.0 |
| $\mathrm{CO}_{2}$ | 0.03 | 4.21 | 4.18 | 5.6 |
| $\mathbf{N}_{2}$ | 79.04 | 79.5 | $\mathbf{0 . 4 6}$ | 80.4 |

## Fundamental Laws for transport and exchange of gases

- Boyle's LawTemperature -constant


## Pa1/V

${ }^{\square}$ Charles' Law Va T

- The volume of a given mass of a gas kept at constant pressure increases by $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$ for each degree rise in temperature.
- Dalton's Law of Partial Pressure
$\square$ Each gas in a mixture exerts a pressure according to its own concentration independently of the other gases present. The pressure of each constituent gas is referred to as its partial pressure or tension. Total pressure is the sum of partial pressure of all the gases present.


## - Henry's Law of Solution of Gases

■ When temperature remains constant, the quantity of gas, which goes into solution in any given liquid, is proportional to the partial pressure of the gas.
$\square$ The ratio of volume of $\mathrm{CO}_{2} /$ volume of $\mathrm{O}_{2}$ is called respiratory quotient, (R.Q).
$\square$ R.Q. varies with the kind of foodstuff oxidised;

- For carbohydrates, the RQ is 1 , for lipids 0.7 , and for protein 0.8.


## Partial pressures of gases <br> Atmospheric air (dry)

|  | Composition \% | Partial pressure $(\mathrm{mmHg})$ | Composition \% | Partial pressure (mmHg) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}_{2}$ | 20.93 | $20.93 \times 760 / 100=159.2$ | 14 | $\begin{aligned} & 14 \\ & x 713 / 100=100 \end{aligned}$ |
| $\mathrm{CO}_{2}$ | 0.03 | $\begin{aligned} & 0.03 \\ & \times 760 / 100=0.23 \end{aligned}$ | 5.6 | $5.6 \times 713 / 100=40$ |
| $\mathrm{N}_{2}$ | 79.04 | $79 \times 760 / 100=600$ | 80 | $\begin{aligned} & 80 \\ & \times 713 / 100=570 \end{aligned}$ |

## Diffusion of gases across the Alveolar Membrane

- Diffusion is the passive movement of gases down a partial pressure (concentration) gradient.
- The alveolar air in the lungs is separated from the blood in capillaries by a thin layer of $1-2 \mu \mathrm{~m}$ thick.
■ It is constituted by a layer of liquid and surfactant lining the alveoli, an epithelial layer, a basement membrane, an interstitum and a layer of capillary endothelium.
$\square$ Across this membrane, $\mathrm{O}_{2}$ diffuse from alveolar air into the blood and $\mathrm{CO}_{2}$ diffuse from the blood into the alveolar air.
$\square$ The rate of gaseous exchange at lungs depends on
$\square$ Partial pressure gradient of the gases in the alveolar air and blood in lung capillaries
$\square$ Physical properties of the gases
$\square$ Surface area available for diffusion
$\square$ Thickness of the air-blood barrier
$\square$ Velocity of the blood


## Respiratory membrane

Alveolar Epithelial basement membrane


## Partial pressures of gases

$\square$ Alveolar $\mathrm{PO}_{2}$ averages about $\mathbf{1 0 0} \mathbf{~ m m H g}$; the venous blood returning to lungs has a $\mathrm{PO}_{2}$ of 40 mmHg ; this provides a driving force of 60 mmHg , resulting in rapid diffusion of $\mathrm{O}_{2}$ into capillaries where it combines with haemoglobin.

- The Hb provides a sink for $\mathrm{O}_{2}$ and maintains a gradient for $\mathrm{O}_{2}$ diffusion.
$\square \mathrm{PCO}_{2}$ of venous blood in lungs is about $\mathbf{4 6 ~ m m H g}$ and alveolar $\mathrm{PCO}_{2}$ is $\mathbf{4 0} \mathbf{~ m m H g}$; this provides a pressure difference of about 6 mmHg only. Despite this small driving force, the diffusion of $\mathrm{CO}_{2}$ per minute equals that of $\mathrm{O}_{2}$.
- This is due to $\mathbf{2 2}$ times more solubility of $\mathrm{CO}_{2}$ than $\mathbf{O}_{2}$.


## Diffusion at the Tissue Level

$\square$ At the tissue level, the capillary blood has a $\mathbf{P O}_{\mathbf{2}}$ of $\mathbf{8 5 - 1 0 0 ~ m m H g}$ and $\mathrm{PCO}_{2}$ is 40 mmHg .

- Tissue $\mathrm{O}_{2}$ tension averages 30 mmHg (can vary according to $\mathrm{O}_{2}$ utilisation) and $\mathrm{CO}_{2}$ tension is 50 $\mathbf{m m H g}$ (varies according to metabolic activity).
$\square$ Because of partial pressure difference, $\mathrm{O}_{2}$ diffuses into the tissues and $\mathrm{CO}_{2}$ diffuses into blood.
$\square$ Tissues with high $\mathrm{O}_{2}$ demand have more capillaries per gram, which provides more diffusing surface area.


## OXYGEN TRANSPORT

- The amount of $\mathrm{O}_{2}$ dissolved in plasma is directly proportional to $\mathbf{P O}_{2}$ and solubility coefficient
- $\mathrm{O}_{2}$ diffuses across all membranes relatively easily
$\square \mathrm{O}_{2}$ combines with haemoglobin and released from haemoglobin easily
- Oxygen is transported in blood in two forms:
$\square \mathrm{O}_{2}$ as physically dissolved $\mathrm{O}_{2}$
$\square \mathrm{O}_{2}$ in combination with haemoglobin



## As Physically Dissolved $\mathbf{O}_{2}$

- In the process of $\mathrm{O}_{2}$ transport from inspired air to tissues, the $\mathrm{O}_{2}$ diffuses across the alveolar membrane and the lung capillary endothelium into the blood plasma where it is physically dissolved according to its solubility co-efficient and partial pressure.
0.003 ml of $\mathbf{O}_{2}$ is dissolved in 100 ml plasma at a $\mathrm{PO}_{2}$ of 1 mmHg .
- As the blood equilibrates with alveolar $\mathrm{O}_{2}$, which is at a $\mathrm{PO}_{2}$ of 100 mmHg , a quantity of $0.3 \mathrm{ml} \mathrm{O}_{2}$ dissolves in each 100 ml blood.


## Transport of $\mathrm{O}_{2}$ with haemoglobin

- After entry into the blood plasma, most of the $\mathrm{O}_{2}$ enters across the red cell membrane into the cell.
- The major portion of $\mathrm{O}_{2}$ carried by blood is not in physical solution but is associated with haemoglobin molecule inside the red cells.
- The movement of $\mathrm{O}_{2}$ in the respiratory circuit is effected under continual $\mathrm{O}_{2}$ pressure gradient and haemoglobin serves as a reservoircharged with $\mathrm{O}_{2}$.
- If 100 ml plasma is exposed to an atmosphere of 100 mmHg partial pressure of $\mathrm{O}_{2}$ and allowed to equilibrate, only 0.3 ml of $\mathrm{O}_{2}$ is taken up.
- But if 100 ml blood is similarly allowed to equilibrate at an $\mathrm{O}_{2}$ tension of 100 mmHg , its final $\mathrm{O}_{2}$ content will be $19-20 \mathrm{ml} / 100 \mathrm{ml}$.
$\square$ The extra uptake of O 2 is contributed by the haemoglobin present within the erythrocytes.
- Each Hb molecule contains 4 haeme groups.
- Each haeme molecule contains one $\mathrm{Fe}^{2+}$ atom in a reduced state and each $\mathrm{Fe}^{2+}$ atom can bind with one molecule of $\mathrm{O}_{2}$
$\square$ Hence, each Hb molecule is capable of combining with up to 4 molecules of $\mathrm{O}_{2}$ depending on the relative concentration of Hb and $\mathrm{O}_{2}$ in blood.

0 The valency of the ferrous iron of haeme is not changed when it combines with $\mathrm{O}_{2}$.
0 So, when reduced Hb combines with $\mathrm{O}_{2}$ it has been oxygenated and not oxidised, and then it is called Oxy -Haemoglobin.
${ }^{0}$ Oxygen binding with Hb is a four step process; the $\mathrm{O}_{2}$ affinity of a particular haeme is influenced by the oxygenation of other haemes in that haemoglobin molecule.

- These haeme-haeme interactions are responsible for the sigmoid shape of the oxyhaemoglobin curve.
${ }_{0}$ Greater the concentration of Hb in blood greater the amount of $\mathrm{O}_{2}$ the blood can carry.
- When all the 4 atoms of $\mathrm{Fe}^{2+}$ in all the Hb molecules in the blood have attached with $\mathrm{O}_{2}, \mathrm{Hb}$ is said to be $100 \%$ saturated and when only half of Hb is saturated with $\mathrm{O}_{2}$, it is $50 \%$ saturation
${ }^{\square}$ When the blood is fully saturated with $\mathbf{O}_{2}$ its $\mathrm{O}_{2}$ content is called $\mathrm{O}_{2}$ carrying capacity.


## CARBON DIOXIDE TRANSPORT

$\square$ The $\mathrm{CO}_{2}$ produced during metabolism is a waste product and has to be eliminated.
$\square$ The flow of $\mathrm{CO}_{2}$ is effected under a continuous pressure gradient.
$\square$ Tissues ( 50 mm Hg )

- Venous blood ( 46 mm Hg )
- Alveolar air ( 40 mm Hg )

- As Physically Dissolved $\mathrm{CO}_{2}$
${ }_{\square}$ Transport in Chemical Combination
> By hydration reaction
> Tiansport as carbamino compounds
$\square$ The transport of $\mathrm{CO}_{2}$ is effected in the following ways.


## As Physically Dissolved $\mathrm{CO}_{2}$

a Compared with $\mathrm{O}_{2}, \mathrm{CO}_{2}$ is about 22 times more soluble in blood plasma.
$\square$ In spite of this, only about 5-7 \% of total $\mathrm{CO}_{2}$ carried by blood is in a simple physical solution.

- Arterial blood ( $\mathrm{pCO}_{2}$ of 40 mmHg ) carries 2.5 ml and mixed venous blood $\left(\mathrm{pCO}_{2}\right.$ of 46 mmHg$)$ carries 2.9 ml of dissolved $\mathrm{CO}_{2}$ in each 100 ml blood i.e about $0.4 \mathrm{ml} \mathrm{CO}_{2}$ is transported from tissues to lungs by 100 ml blood.
$\square$ The factors that determine this transport are the partial pressure of $\mathrm{CO}_{2}$ (Henry's law) and temperature. Both plasma and cells can transport $\mathrm{CO}_{2}$ in a physically dissolved state.


## Transport in Chemical Combination

$\square$ By hydration reaction

- Most of the $\mathrm{CO}_{2}$ within erythrocytes combine with water (hydration) and form carbonic acid which then dissociate to bicarbonate and hydrogen ions
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{CO}_{3}<\mathrm{H}^{+}+\mathrm{HCO}_{3}$ (reaction 1)
■ The erythrocytes contain an enzyme carbonic anhydrase which accelerates the hydration of $\mathrm{CO}_{2}$ several hundred times.
$\square \mathrm{H}_{2} \mathrm{CO}_{3}$ ionizes rapidly and $\mathrm{H}^{+}$and $\mathrm{HCO}_{3}$ accumulate within the erythrocytes.
$\square$ Since the $\mathrm{H}^{+}$ions formed is buffered by haemoglobin and $\mathrm{HCO}_{3}$ diffuses out, the reaction is accelerated to the right.
- $\mathrm{HCO}_{3}$ ions accumulate and their concentration increases within the erythrocytes which diffuse out from erythrocytes into plasma due to concentration gradient.

0 To maintain electrical neutrality, chloride ions diffuse from the plasma into erythrocytes along concentration gradient. This transfer of Cl ions is known as chloride shift or Hamburger shift.

- Deoxyhaemoglobin formed in capillaries due to unloading of $\mathrm{O}_{2}$ to the tissues is a weaker acid than oxyhaemoglobin and hence it is a better buffer.
- Thus deoxyhaemoglobin easily combines with $\mathrm{H}^{+}$ions and facilitate the break down of $\mathrm{H}_{2} \mathrm{CO}_{3}$ by removing the $\mathrm{H}^{+}$ions.
$\square$ When venous blood reaches lungs, $\mathrm{CO}_{2}$ in solution from plasma begins to diffuse toward the alveoli followed by movement of $\mathrm{CO}_{2}$ in solution from erythrocytes. This favours dehydration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ to produce $\mathrm{CO}_{2}$ pushing the reaction (1) towards left.
- Simultaneously carbamino haemoglobin reaction (2) also shifts to left releasing $\mathrm{CO}_{2}$ thus $\mathrm{CO}_{2}$ is unloaded into alveoli.
- Reversing of these reactions is facilitated because haemoglobin is being oxygenated at lung capillaries which become more acidic and releases $\mathrm{H}^{+}$ions easily.
- These $\mathrm{H}^{+}$ions combine with $\mathrm{HCO}_{3}$ to form $\mathrm{H}_{2} \mathrm{CO}_{3}$ which is dehydrated to $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}$.
- The effect of $\mathrm{O}_{2}$ on $\mathrm{H}^{+}$ion and $\mathrm{CO}_{2}$ loading and unloading from haemoglobin is known as Haldane effect or C-D-H effect. i.e. oxygenation of hemoglobin reduces it's ability to bind with $\mathrm{CO}_{2}$ Deoxygenation of the hemoglobin increases its ability to carry $\mathrm{CO}_{2}$.
This is a consequence of the fact that reduced (deoxygenated) hemoglobin is a better proton $\left(\mathrm{H}^{+}\right)$acceptor than the oxygenated form.

