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Sample space and Events

* () :Sample Space, result of an experiment

* |f you toss a coin twice Q= {HH .HT,TH,TT}
* Event: a subset of 2
e First toss is head = {HH,HT}
* S:event space, a set of events:
* Closed under finite union and complements
* Entails other binary operation: union, diff, etc.
* Contains the empty event and Q2



Probability Measure

* Defined over (€2,S) s.t.
e P(ao)>=0forallain$
e P(Q2)=1
* If a, B are disjoint, then
* Pla UP)=pla)+p(B)

e We can deduce other axioms from the above ones

* Ex: P(aw U 3) for non-disjoint event
P(a U B) = p(a) + p(B) —pla N B)



Event space of

all possible —_—
worlds

Its area is 1-'/

Worlds in which

A is true

Worlds in which A is False

Visualization

P(A) = Area of
reddish oval

 We can go on and define conditional
probability, using the above visualization



Conditional Probability

P(F|H) = Fraction of worlds in which H is true that also
have F true

e f1hy=PEOH)
1= p(t [h) o(H)




Rule of total probability




From Events to Random Variable

* Almost all the semester we will be dealing with RV
e Concise way of specifying attributes of outcomes
 Modeling students (Grade and Intelligence):

(2 = all possible students
What are events
 Grade_ A = all students with grade A
 Grade B =all students with grade B
* Intelligence_High = ... with high intelligence
Very cumbersome

We need “functions” that maps from Q2 to an
attribute space.

P(G = A) = P({student € Q2 : G(student) = A})



Random Variables

l:Intelligence

G:Grade

P(l = high) = P( {all students whose intelligence is high})



Discrete Random Variables

 Random variables (RVs) which may take on
only a countable number of distinct values

— E.g. the total number of tails X you get if you flip
100 coins

* Xis a RV with arity k if it can take on exactly
one value out of {x,, ..., x;}

— E.g. the possible values that X can take on are 0O, 1,
2, ..., 100



Probability of Discrete RV

* Probability mass function (pmf): P(X = x)
e Easy facts about pmf

= 3 P(X=x)=1

" P(X=xnX=x)=0ifi #]

" P(X=x,UX=x)=P(X=x)+P(X=x)ifi#]

" PX=x,UX=x,U..UX=x)=1



Common Distributions

* Uniform X Ul[1, ..., N]

= X takesvalues 1, 2, ... N

»" P(X=/)=1/N

= E.g. picking balls of different colors from a box
 Binomial X  Bin(n, p)

= X takes values O, 1, ..., n

" pX=i)=| . |p-py

" E.g. coin flips




Continuous Random Variables

* Probability density function (pdf) instead of
probability mass function (pmf)

* A pdfis any function f(x) that describes the
probability density in terms of the input
variable x.



Probability of Continuous RV

* Properties of pdf
= f(x)=20,Vx

[ =1

e Actual probability can be obtained by taking
the integral of pdf

= E.g. the probability of X being between 0 and 1 is

POLX<])= Jf(x)dx

0



Cumulative Distribution Function

«(v) = P(X <)
* Discrete RVs

" F(v)=2%2,P(X=v)
* Continuous RVs

" F(v) = f F(x)dx

* E) =10



Common Distributions

* Normal X N(u, o?)

) 1 (-
1) == exp[ - )

= E.g. the height of the entire population

0 L L L
----------------



Joint Probability Distribution

e Random variables encodes attributes

* Not all possible combination of attributes are equally
likely

e Joint probability distributions quantify this
* P(X=x,Y=y)=P(x,y)
* Generalizes to N-RVs

+ 22 PX=xY=y)=1
| .” fX,Y(X1 y Jxdy =1



Chain Rule

* Always true

* P(x,y,z) =p(x) ply|x) p(z]x, y)
= p(z) plylz) p(x]y, 2)



Conditional Probability




Marginalization

 We know p(X, Y), what is P(X=x)?
 We can use the low of total probability, why?




Marginalization Cont.

* Another example

p(x)= ;P(X, y,2)
= ;P(y, 2)P(x|y,2)



Bayes Rule

 We know that P(rain) = 0.5

* |f we also know that the grass is wet, then
how this affects our belief about whether it
rains or not?

P(rain)P(wet | rain)
P(wet)

P(rain | wet) =

P(x)P(y | x)
P(y)

P(x |y):



Bayes Rule cont.

* You can condition on more variables

P(x]|Z)P(y|x,2)

Py =00



Independence

e Xis independent of Y means that knowing Y
does not change our belief about X.

* P(X]Y=y) = P(X)

e P(X=x, Y=y) = P(X=x) P(Y=y)

 The above should hold for all x, y

* [tis symmetric and writtenas X LY



Independence

* X4, ..., X, are independent if and only if

P(X, € 4,...X, € 4,) =] [ P(X, € 4
i=1
* If X,, ..., X, are independent and identically
distributed we say they are iid (or that they

are a random sample) and we write



Cl: Conditional Independence

RV are rarely independent but we can still
leverage local structural properties like
Conditional Independence.

e XLY| ZifonceZisobserved, knowing the
value of Y does not change our belief about X

* P(rain L sprinkler’s on | cloudy)
* P(rain X sprinkler’s on | wet grass)




Conditional Independence

P(X=x
P(Y=y

/=z, Y=y) =
/=7, X=X) =

P(X=x, Y=y | Z=z) =

P(X=x
P(Y=y

/=1)
/=1)

D(X=x1<=z)l3y);f| /=1)

We call these factors : very useful concept !!



The Big Picture

Probability

© @

Estimation/learning




