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Sample space and Events 

 
• W : Sample Space, result of an experiment 

• If you toss a coin twice W = {HH,HT,TH,TT} 

• Event: a subset of W  

• First toss is head = {HH,HT} 

• S: event space, a set of events: 

• Closed under finite union and complements 

• Entails other binary operation: union, diff, etc. 

• Contains the empty event and W 

 

 

 



Probability Measure 

• Defined over (W,S) s.t. 

• P(a) >= 0 for all a in S 

• P(W) = 1 

• If a, b are disjoint, then  

• P(a U b) = p(a) + p(b) 

• We can deduce other axioms from the above ones 

• Ex: P(a U b) for non-disjoint event 

 P(a U b) = p(a) + p(b) – p(a ∩ b) 

 

 

 

 



Visualization 

• We can go on and define conditional 
probability, using the above visualization 



Conditional Probability 

P(F|H) = Fraction of worlds in which H is true that also 
have F true 
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Rule of total probability 
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From Events to Random Variable 

• Almost all the semester we will be dealing with RV 

• Concise way of specifying attributes of outcomes 

• Modeling students (Grade and Intelligence): 

• W =  all possible students 

• What are events 

• Grade_A = all students with grade A 

• Grade_B = all students with grade B 

• Intelligence_High = … with high intelligence 

• Very cumbersome 

• We need “functions” that maps from W to an 
attribute space. 

• P(G = A) = P({student ϵ W : G(student) = A})   

 

 



Random Variables 
W 

High 

low 

A 

B A+ 

I:Intelligence 

G:Grade 

P(I = high) = P( {all students whose intelligence is high}) 



Discrete Random Variables 

• Random variables (RVs) which may take on 
only a countable number of distinct values 

– E.g. the total number of tails X you get if you flip 
100 coins 

• X is a RV with arity k if it can take on exactly 
one value out of {x1, …, xk} 

– E.g. the possible values that X can take on are 0, 1, 
2, …, 100 



Probability of Discrete RV 

• Probability mass function (pmf): P(X = xi) 

• Easy facts about pmf 

 Σi P(X = xi) = 1 

 P(X = xi∩X = xj) = 0 if i ≠ j 

 P(X = xi U X = xj) = P(X = xi) + P(X = xj) if i ≠ j 

 P(X = x1 U X = x2 U … U X = xk) = 1  



Common Distributions 

• Uniform X U*1, …, N] 

 X takes values 1, 2, … N 

 P(X = i) = 1/N 

 E.g. picking balls of different colors from a box 

• Binomial X Bin(n, p) 

 X takes values 0, 1, …, n 

   

 E.g. coin flips 

 

p(X = i) =
n

i

 

 
 

 

 
 p

i(1 p)n i



Continuous Random Variables 

• Probability density function (pdf) instead of 
probability mass function (pmf) 

• A pdf is any function f(x) that describes the 
probability density in terms of the input 
variable x. 

 



Probability of Continuous RV 

• Properties of pdf 

   

 

   

 

• Actual probability can be obtained by taking 
the integral of pdf 

 E.g. the probability of X being between 0 and 1 is  

 

 

f (x)  0,x

f (x) =1






 

P(0  X 1) = f (x)dx
0

1





Cumulative Distribution Function 

• FX(v) = P(X ≤ v) 

• Discrete RVs 

 FX(v) = Σvi P(X = vi) 

• Continuous RVs 

   

 

   

 

FX (v) = f (x)dx


v



d

dx
Fx (x) = f (x)



Common Distributions 

• Normal X N(μ, σ2) 

 

   

 

 E.g. the height of the entire population 
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Joint Probability Distribution 

• Random variables encodes attributes 

• Not all possible combination of attributes are equally 
likely 

• Joint probability distributions quantify this  

• P( X= x, Y= y) = P(x, y)   

• Generalizes to N-RVs 

•   
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Chain Rule 

• Always true 

• P(x, y, z) = p(x) p(y|x) p(z|x, y) 

       = p(z) p(y|z) p(x|y, z) 

    =… 



Conditional Probability 
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But we will always write it this way: 

events 



Marginalization 
 

  
• We know p(X, Y), what is P(X=x)? 

• We can use the low of total probability, why? 
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Marginalization Cont. 
 

  
• Another example 
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Bayes Rule 

• We know that P(rain) = 0.5 

• If we also know that the grass is wet, then 
how this affects our belief about whether it 
rains or not? 

 

 

 

 

  

P rain |wet ) =
P(rain)P(wet | rain)

P(wet )

 

P x | y )=
P(x)P(y | x)

P(y)



Bayes Rule cont. 

• You can condition on more variables 
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Independence 

• X is independent of Y means that knowing Y 
does not change our belief about X. 

• P(X|Y=y) = P(X)   

• P(X=x, Y=y) = P(X=x) P(Y=y) 

• The above should hold for all x, y 

• It is symmetric and written as X  Y 



Independence 

• X1, …, Xn are independent if and only if 

 

 

• If X1, …, Xn are independent and identically 
distributed we say they are iid (or that they 
are a random sample) and we write 

   

 

 

P(X1  A1,...,Xn  An ) = P X i  Ai )
i=1

n



X1, …, Xn ∼ P 



CI: Conditional Independence 

• RV are rarely independent but we can still 
leverage local structural properties like 
Conditional Independence. 

• X  Y | Z if once Z is observed, knowing the 
value of Y does not change our belief about X 

• P(rain  sprinkler’s on | cloudy) 

• P(rain  sprinkler’s on | wet grass) 

 

 



Conditional Independence 

• P(X=x | Z=z, Y=y) = P(X=x | Z=z)  

• P(Y=y | Z=z, X=x) = P(Y=y | Z=z)  

• P(X=x, Y=y | Z=z) = P(X=x| Z=z) P(Y=y| Z=z)  

 We call these factors : very useful concept !! 



The Big Picture 

Model Data 

Probability 

Estimation/learning 


