ANIMAL GENETICS & BREEDING

UNIT - I BIO-STATISTICS AND COMPUTER APPLICATION Theory

PROBABILITY

Dr Anil Meel Department of Animal Genetics & Breeding MJF Veterinary college

Sample space and Events

- Ω : Sample Space, result of an experiment
 - If you toss a coin twice $\Omega = \{HH,HT,TH,TT\}$
- Event: a subset of Ω
 - First toss is head = {HH,HT}
- S: event space, a set of events:
 - Closed under finite union and complements
 - Entails other binary operation: union, diff, etc.
 - Contains the empty event and $\boldsymbol{\Omega}$

Probability Measure

- Defined over (Ω ,S) s.t.
 - $P(\alpha) \ge 0$ for all α in S
 - P(Ω) = 1
 - If α , β are disjoint, then
 - $P(\alpha \cup \beta) = p(\alpha) + p(\beta)$
- We can deduce other axioms from the above ones
 - Ex: $P(\alpha \cup \beta)$ for non-disjoint event $P(\alpha \cup \beta) = p(\alpha) + p(\beta) - p(\alpha \cap \beta)$

Visualization

 We can go on and define conditional probability, using the above visualization

Conditional Probability

P(F|H) = Fraction of worlds in which H is true that also have F true

Rule of total probability

 $p(A) = \sum P(B_i) P(A \mid B_i)$

From Events to Random Variable

- Almost all the semester we will be dealing with RV
- Concise way of specifying attributes of outcomes
- Modeling students (Grade and Intelligence):
 - $\Omega =$ all possible students
 - What are events
 - Grade_A = all students with grade A
 - Grade_B = all students with grade B
 - Intelligence_High = ... with high intelligence
 - Very cumbersome
 - We need "functions" that maps from Ω to an attribute space.
 - $P(G = A) = P(\{student \in \Omega : G(student) = A\})$

Random Variables

P(I = high) = P({all students whose intelligence is high})

Discrete Random Variables

- Random variables (RVs) which may take on only a countable number of distinct values
 - E.g. the total number of tails X you get if you flip 100 coins
- X is a RV with arity k if it can take on exactly one value out of {x₁, ..., x_k}
 - E.g. the possible values that X can take on are 0, 1,2, ..., 100

Probability of Discrete RV

- Probability mass function (pmf): $P(X = x_i)$
- Easy facts about pmf
 - $\Sigma_i P(X = x_i) = 1$
 - $P(X = x_i \cap X = x_j) = 0$ if $i \neq j$
 - $P(X = x_i \cup X = x_j) = P(X = x_i) + P(X = x_j)$ if $i \neq j$
 - $P(X = x_1 \cup X = x_2 \cup ... \cup X = x_k) = 1$

Common Distributions

- Uniform X *U*[1, ..., *N*]
 - X takes values 1, 2, ... N
 - P(X = i) = 1/N
 - E.g. picking balls of different colors from a box
- Binomial X Bin(n, p)
 - X takes values 0, 1, ..., n
 - $p(X=i) = \binom{n}{i} p^i (1-p)^{n-i}$
 - E.g. coin flips

Continuous Random Variables

- Probability density function (pdf) instead of probability mass function (pmf)
- A pdf is any function f(x) that describes the probability density in terms of the input variable x.

Probability of Continuous RV

- Properties of pdf
 - $f(x) \ge 0, \forall x$

•
$$\int_{-\infty}^{+\infty} f(x) = 1$$

- Actual probability can be obtained by taking the integral of pdf
 - E.g. the probability of X being between 0 and 1 is $P(0 \le X \le 1) = \int_{0}^{1} f(x) dx$

Cumulative Distribution Function

- $F_X(v) = P(X \le v)$
- Discrete RVs
 - $F_X(v) = \Sigma_{vi} P(X = v_i)$
- Continuous RVs

•
$$F_X(v) = \int_{-\infty}^{v} f(x) dx$$

•
$$\frac{d}{dx}F_x(x) = f(x)$$

Common Distributions

• Normal X $N(\mu, \sigma^2)$

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

E.g. the height of the entire population

Joint Probability Distribution

- Random variables encodes attributes
- Not all possible combination of attributes are equally likely
 - Joint probability distributions quantify this

Generalizes to N-RVs

•
$$\sum_{x} \sum_{y} P(X = x, Y = y) = 1$$

•
$$\int_{x} \int_{y} f_{X,Y}(x, y) dx dy = 1$$

Chain Rule

- Always true
 - P(x, y, z) = p(x) p(y|x) p(z|x, y)
 = p(z) p(y|z) p(x|y, z)
 =...

Conditional Probability

$$P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$$
events

But we will always write it this way:

$$P(x \mid y) = \frac{p(x, y)}{p(y)}$$

Marginalization

- We know p(X, Y), what is P(X=x)?
- We can use the low of total probability, why?

$$p(x) = \sum_{y} P(x, y)$$
$$= \sum_{y} P(y) P(x | y)$$

Marginalization Cont.

• Another example

$$p(x) = \sum_{y,z} P(x, y, z)$$
$$= \sum_{z,y} P(y, z) P(x \mid y, z)$$

Bayes Rule

- We know that P(rain) = 0.5
 - If we also know that the grass is wet, then how this affects our belief about whether it rains or not?

$$P(rain \mid wet) = \frac{P(rain)P(wet \mid rain)}{P(wet)}$$

$$P(x | y) = \frac{P(x)P(y | x)}{P(y)}$$

Bayes Rule cont.

• You can condition on more variables

$$P(x \mid y, z) = \frac{P(x \mid z)P(y \mid x, z)}{P(y \mid z)}$$

Independence

- X is independent of Y means that knowing Y does not change our belief about X.
 - P(X | Y=y) = P(X)
 - P(X=x, Y=y) = P(X=x) P(Y=y)
 - The above should hold for all x, y
 - It is symmetric and written as $\mathsf{X} \perp \mathsf{Y}$

Independence

• X₁, ..., X_n are independent if and only if

$$P(X_1 \in A_1, ..., X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i)$$

 If X₁, ..., X_n are independent and identically distributed we say they are *iid* (or that they are a random sample) and we write

CI: Conditional Independence

- RV are rarely independent but we can still leverage local structural properties like Conditional Independence.
- $X \perp Y \mid Z$ if once Z is observed, knowing the value of Y does not change our belief about X
 - P(rain ⊥ sprinkler's on | cloudy)
 - P(rain ∠ sprinkler's on | wet grass)

Conditional Independence

- P(X=x | Z=z, Y=y) = P(X=x | Z=z)
- P(Y=y | Z=z, X=x) = P(Y=y | Z=z)
- P(X=x, Y=y | Z=z) = P(X=x | Z=z) P(Y=y | Z=z)

We call these factors : very useful concept !!

The Big Picture

