ANIMAL GENETICS \& BREEDING

UNIT - I
BIO-STATISTICS AND COMPUTER APPLICATION Theory

PROBABILITY

Dr Anil Meel
Department of Animal Genetics \& Breeding MJF Veterinary college

Sample space and Events

- Ω : Sample Space, result of an experiment
- If you toss a coin twice $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Event: a subset of Ω
- First toss is head $=\{\mathrm{HH}, \mathrm{H} T\}$
- S: event space, a set of events:
- Closed under finite union and complements
- Entails other binary operation: union, diff, etc.
- Contains the empty event and Ω

Probability Measure

- Defined over (Ω, S) s.t.
- $P(\alpha)>=0$ for all α in S
- $P(\Omega)=1$
- If α, β are disjoint, then
- $P(\alpha \cup \beta)=p(\alpha)+p(\beta)$
- We can deduce other axioms from the above ones
- Ex: $P(\alpha \cup \beta)$ for non-disjoint event $P(\alpha \cup \beta)=p(\alpha)+p(\beta)-p(\alpha \cap \beta)$

Visualization

- We can go on and define conditional probability, using the above visualization

Conditional Probability

$\mathrm{P}(\mathrm{F} \mid \mathrm{H})=$ Fraction of worlds in which H is true that also have F true

$$
p(f \mid h)=\frac{p(F \cap H)}{p(H)}
$$

Rule of total probability

$$
p(A)=\sum P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

From Events to Random Variable

- Almost all the semester we will be dealing with RV
- Concise way of specifying attributes of outcomes
- Modeling students (Grade and Intelligence):
- $\Omega=$ all possible students
- What are events
- Grade_A = all students with grade A
- Grade_B = all students with grade B
- Intelligence_High = ... with high intelligence
- Very cumbersome
- We need "functions" that maps from Ω to an attribute space.
- $P(G=A)=P(\{$ student $\in \Omega: G($ student $)=A\})$

Random Variables

$P(I=$ high $)=P($ all students whose intelligence is high $\})$

Discrete Random Variables

- Random variables (RVs) which may take on only a countable number of distinct values
- E.g. the total number of tails X you get if you flip 100 coins
- X is a RV with arity k if it can take on exactly one value out of $\left\{x_{1}, \ldots, x_{k}\right\}$
- E.g. the possible values that X can take on are 0,1 , 2, ..., 100

Probability of Discrete RV

- Probability mass function (pmf): $\mathrm{P}\left(\mathrm{X}=x_{i}\right)$
- Easy facts about pmf
- $\Sigma_{i} \mathrm{P}\left(\mathrm{X}=x_{i}\right)=1$
- $\mathrm{P}\left(\mathrm{X}=x_{i} \cap \mathrm{X}=x_{j}\right)=0$ if $\mathrm{i} \neq \mathrm{j}$
- $\mathrm{P}\left(\mathrm{X}=x_{i} \cup \mathrm{X}=x_{j}\right)=\mathrm{P}\left(\mathrm{X}=x_{i}\right)+\mathrm{P}\left(\mathrm{X}=x_{j}\right)$ if $\mathrm{i} \neq \mathrm{j}$
- $\mathrm{P}\left(\mathrm{X}=x_{1} \cup \mathrm{X}=x_{2} \cup \ldots \cup \mathrm{X}=x_{k}\right)=1$

Common Distributions

- Uniform $X \quad U[1, \ldots, N]$
- X takes values $1,2, \ldots N$
- $\mathrm{P}(\mathrm{X}=i)=1 / \mathrm{N}$
- E.g. picking balls of different colors from a box
- Binomial X $\operatorname{Bin}(n, p)$
- X takes values $0,1, \ldots, n$
- $p(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}$
- E.g. coin flips

Continuous Random Variables

- Probability density function (pdf) instead of probability mass function (pmf)
- A pdf is any function $f(x)$ that describes the probability density in terms of the input variable x.

Probability of Continuous RV

- Properties of pdf
- $f(x) \geq 0, \forall x$
- $\int_{-\infty}^{+\infty} f(x)=1$
- Actual probability can be obtained by taking the integral of pdf
- E.g. the probability of X being between 0 and 1 is

$$
P(0 \leq X \leq 1)=\int_{0}^{1} f(x) d x
$$

Cumulative Distribution Function

- $F_{X}(v)=\mathrm{P}(\mathrm{X} \leq v)$
- Discrete RVs
- $F_{\mathrm{x}}(v)=\Sigma_{\mathrm{vi}} \mathrm{P}\left(\mathrm{X}=v_{i}\right)$
- Continuous RVs
- $F_{X}(v)=\int_{-\infty}^{\infty} f(x) d x$
- $\frac{d}{d x} F_{x}(x)=f(x)$

Common Distributions

- Normal X $N\left(\mu, \sigma^{2}\right)$
- $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- E.g. the height of the entire population

Joint Probability Distribution

- Random variables encodes attributes
- Not all possible combination of attributes are equally likely
- Joint probability distributions quantify this
- $P(X=x, Y=y)=P(x, y)$
- Generalizes to N-RVs
- $\sum_{x} \sum_{y} P(X=x, Y=y)=1$
- $\int_{x} \int_{y} f_{X, Y}(x, y) d x d y=1$

Chain Rule

- Always true
- $P(x, y, z)=p(x) p(y \mid x) p(z \mid x, y)$

$$
\begin{aligned}
& =p(z) p(y \mid z) p(x \mid y, z) \\
& =\ldots
\end{aligned}
$$

Conditional Probability

$$
\mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y)=\frac{\mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)}{\mathrm{P}(\mathrm{Y}=y)}
$$

But we will always write it this way:

$$
P(x \mid y)=\frac{p(x, y)}{p(y)}
$$

Marginalization

- We know $p(X, Y)$, what is $P(X=x)$?
- We can use the low of total probability, why?

$$
\begin{aligned}
p(x) & =\sum_{y} P(x, y) \\
& =\sum_{y} P(y) P(x \mid y)
\end{aligned}
$$

Marginalization Cont.

- Another example

$$
\begin{aligned}
p(x) & =\sum_{y, z} P(x, y, z) \\
& =\sum_{z, y} P(y, z) P(x \mid y, z)
\end{aligned}
$$

Bayes Rule

- We know that $P($ rain $)=0.5$
- If we also know that the grass is wet, then how this affects our belief about whether it rains or not?

$$
\begin{gathered}
P(\text { rain } \mid \text { wet })=\frac{P(\text { rain }) P(\text { wet } \mid \text { rain })}{P(\text { wet })} \\
P(x \mid y)=\frac{P(x) P(y \mid x)}{P(y)}
\end{gathered}
$$

Bayes Rule cont.

- You can condition on more variables

$$
P(x \mid y, z)=\frac{P(x \mid z) P(y \mid x, z)}{P(y \mid z)}
$$

Independence

- X is independent of Y means that knowing Y does not change our belief about X.
- $P(X \mid Y=y)=P(X)$
- $P(X=x, Y=y)=P(X=x) P(Y=y)$
- The above should hold for all x, y
- It is symmetric and written as $X \perp Y$

Independence

- X_{1}, \ldots, X_{n} are independent if and only if

$$
P\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \in A_{i}\right)
$$

- If X_{1}, \ldots, X_{n} are independent and identically distributed we say they are iid (or that they are a random sample) and we write

$$
\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \sim P
$$

Cl : Conditional Independence

- RV are rarely independent but we can still leverage local structural properties like Conditional Independence.
- $X \perp Y \mid Z$ if once Z is observed, knowing the value of Y does not change our belief about X
- P (rain \perp sprinkler's on | cloudy)
- P(rain \nless sprinkler's on \| wet grass)

Conditional Independence

- $P(X=x \mid Z=z, Y=y)=P(X=x \mid Z=z)$
- $P(Y=y \mid Z=z, X=x)=P(Y=y \mid Z=z)$
- $P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)$

We call these factors : very useful concept !!

The Big Picture

