ANIMAL GENETICS \& BREEDING

UNIT - I
 BIO-STATISTICS AND COMPUTER APPLICATION Theory

Measure of Dispersion

Dr Anil Meel
Department of Animal Genetics \& Breeding MJF Veterinary college

Measures of Dispersion

Definition

- Measures of dispersion are descriptive statistics that describe how similar a set of scores are to each other
- The more similar the scores are to each other, the lower the measure of dispersion will be
- The less similar the scores are to each other, the higher the measure of dispersion will be
- In general, the more spread out a distribution is, the larger the measure of dispersion will be

Measures of Dispersion

- Which of the distributions of scores has the larger dispersion?

女 The upper distribution has more dispersion because the scores are more spread out
女 That is, they are less similar to each other

Measures of Dispersion

- There are three main measures of dispersion:
- Range
- Variance
- standard deviation

The Range

- The range is defined as the difference between the largest score in the set of data and the smallest score in the set of data, $\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{S}}$
- What is the range of the following data:
$\begin{array}{llllllllll}4 & 8 & 1 & 6 & 6 & 2 & 9 & 3 & 6 & 9\end{array}$
- The largest score $\left(X_{L}\right)$ is 9 ; the smallest score $\left(X_{S}\right)$ is 1 ; the range is $X_{L}-X_{S}=9-1=8$

When To Use the Range

- The range is used when
- you have ordinal data or
- you are presenting your results to people with little or no knowledge of statistics
- The range is rarely used in scientific work as it is fairly insensitive
- It depends on only two scores in the set of data, X_{L} and X_{S}
- Two very different sets of data can have the same range:

$$
\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 9 & V S & 1 & 3 & 5 & 7 & 9
\end{array}
$$

Variance

- Variance is defined as the average of the square deviations:

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}
$$

What Does the Variance Formula Mean?

- First, it says to subtract the mean from each of the scores
- This difference is called a deviate or a deviation score
- The deviate tells us how far a given score is from the typical, or average, score
- Thus, the deviate is a measure of dispersion for a given score

What Does the Variance Formula

 Mean?- Why can't we simply take the average of the deviates? That is, why isn't variance defined as:

What Does the Variance Formula

 Mean?- One of the definitions of the mean was that it always made the sum of the scores minus the mean equal to o
- Thus, the average of the deviates must be o since the sum of the deviates must equal o
- To avoid this problem, statisticians square the deviate score prior to averaging them
- Squaring the deviate score makes all the squared scores positive

What Does the Variance Formula

 Mean?- Variance is the mean of the squared deviation scores
- The larger the variance is, the more the scores deviate, on average, away from the mean
- The smaller the variance is, the less the scores deviate, on average, from the mean

Standard Deviation

- When the deviate scores are squared in variance, their unit of measure is squared as well
- E.g. If people's weights are measured in pounds, then the variance of the weights would be expressed in pounds ${ }^{2}$ (or squared pounds)
- Since squared units of measure are often awkward to deal with, the square root of variance is often used instead
- The standard deviation is the square root of variance

Standard Deviation

- Standard deviation $=V$ variance
- Variance $=$ standard deviation ${ }^{2}$

Computational Formula

- When calculating variance, it is often easier to use a computational formula which is algebraically equivalent to the definitional formula:

$$
\sigma^{2}=\frac{\sum X^{2}-\frac{\left(\sum \mathrm{X}\right)^{2}}{\mathrm{~N}}}{\mathrm{~N}}=\frac{\sum(\mathrm{X}-\mu)^{2}}{\mathrm{~N}}
$$

女 σ^{2} is the population variance, X is a score, μ is the population mean, and N is the number of scores

Computational Formula Example

X	X^{2}	$X-\mu$	$(X-\mu)^{2}$
9	81	2	4
8	64	1	1
6	36	-1	1
5	25	-2	4
8	64	1	1
6	36	-1	1
$\Sigma=42$	$\Sigma=306$	$\Sigma=0$	$\Sigma=12$

Computational Formula Example

$$
\begin{array}{ll}
\sigma^{2}=\frac{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}}{N} & \sigma^{2}=\frac{\sum(X-\mu)^{2}}{N} \\
=\frac{306-\frac{42^{2}}{6}}{6} & =\frac{12}{6} \\
=\frac{306-294}{6} & =2 \\
=\frac{12}{6} & \\
=2
\end{array}
$$

Variance of a Sample

- Because the sample mean is not a perfect estimate of the population mean, the formula for the variance of a sample is slightly different from the formula for the variance of a population:

$$
\mathrm{s}^{2}=\frac{\sum(\mathrm{X}-\overline{\mathrm{X}})^{2}}{\mathrm{~N}-1}
$$

$\mathrm{m}^{2} \mathrm{~s}^{2}$ is the sample variance, X is a score, $\overline{\mathrm{X}}$ is the sample mean, and N is the number of scores

