ANIMAL GENETICS & BREEDING

UNIT - I BIO-STATISTICS AND COMPUTER APPLICATION Theory

Measure of Dispersion

Dr Anil Meel Department of Animal Genetics & Breeding MJF Veterinary college

Measures of Dispersion

Definition

- *Measures of dispersion* are descriptive statistics that describe how similar a set of scores are to each other
 - The more similar the scores are to each other, the lower the measure of dispersion will be
 - The less similar the scores are to each other, the higher the measure of dispersion will be
 - In general, the more spread out a distribution is, the larger the measure of dispersion will be

Measures of Dispersion

- Which of the distributions of scores has the larger dispersion?
- The upper distribution
 has more dispersion
 because the scores are
 more spread out
 - That is, they are less similar to each other

Measures of Dispersion

- There are three main measures of dispersion:
 - Range
 - Variance
 - standard deviation

The Range

- The *range* is defined as the difference between the largest score in the set of data and the smallest score in the set of data, X_L - X_S
- What is the range of the following data:
 4 8 1 6 6 2 9 3 6 9
- The largest score (X_L) is 9; the smallest score (X_S) is 1; the range is X_L - X_S = 9 - 1 = 8

When To Use the Range

- The range is used when
 - you have ordinal data or
 - you are presenting your results to people with little or no knowledge of statistics
- The range is rarely used in scientific work as it is fairly insensitive
 - It depends on only two scores in the set of data, $X_{\rm L}$ and $X_{\rm S}$
 - Two very different sets of data can have the same range:
 - 1 1 1 1 9 VS 1 3 5 7 9

Variance

• *Variance* is defined as the average of the square deviations:

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

- First, it says to subtract the mean from each of the scores
 - This difference is called a *deviate* or a *deviation score*
 - The deviate tells us how far a given score is from the typical, or average, score
 - Thus, the deviate is a measure of dispersion for a given score

• Why can't we simply take the average of the deviates? That is, why isn't variance defined as:

- One of the definitions of the *mean* was that it always made the sum of the scores minus the mean equal to o
- Thus, the average of the deviates must be o since the sum of the deviates must equal o
- To avoid this problem, statisticians square the deviate score prior to averaging them
 - Squaring the deviate score makes all the squared scores positive

- Variance is the mean of the squared deviation scores
- The larger the variance is, the more the scores deviate, on average, away from the mean
- The smaller the variance is, the less the scores deviate, on average, from the mean

Standard Deviation

- When the deviate scores are squared in variance, their unit of measure is squared as well
 - E.g. If people's weights are measured in pounds, then the variance of the weights would be expressed in pounds² (or squared pounds)
- Since squared units of measure are often awkward to deal with, the square root of variance is often used instead
 - The standard deviation is the square root of variance

Standard Deviation

- Standard deviation = $\sqrt{variance}$
- Variance = standard deviation²

Computational Formula

• When calculating variance, it is often easier to use a computational formula which is algebraically equivalent to the definitional formula: $(-x)^2$

 \oplus σ^2 is the population variance, X is a score, μ is the population mean, and N is the number of scores

Computational Formula Example

X	X^2	Χ-μ	$(X-\mu)^2$
9	81	2	4
8	64	1	1
6	36	-1	1
5	25	-2	4
8	64	1	1
6	36	-1	1
$\Sigma = 42$	$\Sigma = 306$	$\Sigma = 0$	$\Sigma = 12$

Computational Formula Example

= 2

 $\sigma^2 = \frac{\sum (X - \mu)^2}{N}$ $=\frac{12}{6}$

Variance of a Sample

 Because the sample mean is not a perfect estimate of the population mean, the formula for the variance of a sample is slightly different from the formula for the variance of a population:

